
Best,
Avai~lable

copy

AD-A281 136 :
I~hIIIhII Co~putc oc~nc

On-Line Scheduling on Parallel Machines

Jifi Sgall
May 1994

CMU-CS-94-144

LECTEf

IjI

94-20655

947 6 103.

On-Line Scheduling on Parallel Machines

Jifi Sgall

May 1994
CMU-CS-94-144

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Thesis Comittee:
Steven Rudich, Chair

Daniel D. Sleator
Avrim Blum

Russell Impagliazzo, UC San Diego

® 1994 Jiti Sgall

This research was sponsored by the National Science Foundation under grant number
CCR-9119319.

The views and conclusions contained in this document are those of the author and
should not be interpreted as representing the official poli,.es, either expressed or implied,
of NSF or of the U.S. Government.

Keywords: competitive analysis, dependencies, network topology, on-
line algorithms, parallel jobs, parallel machines, randomization, scheduling,
virtualization.

Segie School of Computer Science

DOCTORAL THESIS
in the field of

Pure and Applied Logic

On-Line Scheduling on Parallel Machines

Ji(" Sgall

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

ACCEPTED:

THESIS COMMITTEE CHAIR DATE

DEPARTMENT HEAD 'ATE

APPROVED:

DEAN DATE

Abstract

Given a parallel machine with processors arranged in some particular network

topology (e.g., on a mesh machine the processors are arranged in a rectangu-
lar grid), we have to execute different parallel jobs. Each job requires some
part of the machine (e.g., a mesh of a smaller size), and can be executed on
any subset of processors with that network topology. Each job will run for
some fixed time, regardless of when we execute it. But we do not know the
running times in advance, the only way to determine the running time of
a job is to execute it. Scheduling may also be constrained by dependencies
between jobs; it may be the case that a job cannot be started until some
other jobs have finished. Our task is to schedule a given set of jobs so that
all constraints are satisfied and the total time is as small as possible.

We claim that in this model efficient on-line scheduling is possible on
a variety of different parallel machines, including PRAMs, hypercubes and
mesh machines. However, the efficiency depends on various factors, including
the presence of dependencies, the combinatorial complexity of the network
topology, randomization, the use of virtualization, and the maximal size of
jobs.

We show that without dependencies, randomized algorithms can achieve
a significantly better performance than deterministic ones; on the other hand
with dependencies randomization does not help.

The complexity of the network topology has a big influence both with and
without dependencies. For more complex networks the optimal performance

is significantly worse. Without dependencies, it is to some extent possible
to avoid this loss of performance by using more sophisticated algorithms for

more complex networks; we show that the greedy method, which is a natural
method for on-line scheduling, works very well for simple cases but it is not
efficient for more complex machines.

With dependencies, we show that to achieve a good overali performance,
it is sometimes essential to use virtualization, i.e., to schedule some jobs on
a smaller number of processors than they request, even though it means that
their running times increase proportionally. Also limiting the maximal size

of jobs improves the performance with dependencies. On the other hand,

without dependencies virtualization and the maximal size of jobs are not
important factors.

We also study another model in which we only have sequential jobs (jobs

requiring only one processor). As opposed to the other model, they arrive
and have to be scheduled one by one in a predetermined order. The running
time of a job is known as soon as it arrives, but we have to schedule the
job immediately without any knowledge of future jobs. The goal is again
to schedule all jobs so that the total time is as small as possible. In this
model, we significantly improve the previously known lower bounds on the
performance of randomized algorithms.

ii

Acknowledgements

After my arrival at CMU, Steven Rudich invited me to play a game of go
against a computer program that "nobody in the department can beat".
Once I had lost, he revealed to me that my opponent was not a computer but
one of the strongest human players I ever faced; due to his perfect setup I had
no chance to discover the trick. Shortly after that we started to talk about
a serious research problem at some party. Not having any paper, Steven
outlined the problem on my paper plate. Since then, Steven has always been
like that-full of enthusiasm and unconventional ideas, extremely open and
understanding, and fun to work with. He advised me in professional matters
such as research, my presentations and my career, and introduced me to
many colleagues; he also helped me in everything else from improving my
English to selecting good restaurants.

I am grateful to the coauthors of the papers on scheduling, Anja Feld-
mann, Shang-Hua Teng and Ming-Yang Kao for their permission to include
our joint work in my thesis. Shang-Hua introduced the model of on-line
scheduling of parallel jobs, and his enthusiasm was the driving force of this
research even after he graduated from CMU. Anja was always willing to lis-
ten to the first sketches of my proofs and read the first drafts of them, often
hardly comprehensible. Her comments significantly improved the presenta-
tion of this thesis.

I would also like to thank to the rest of my committee. Danny Sleator,
Avrim Blum and Russell Impagliazzo. for many valuable discussions and
encouragement in my work. Discussions with Howard Karloff about on-
line scheduling of sequential jobs had a major influence on that part of my
thesis. I have also benefited from conversations with Guy Blelloch. Alan
Frieze, Garth Gibson, Thomas Gross. .Jonathan Hardwick, .John Reif. Ma-
hadev Satyanaravanan, .Jay Sipelstein. and .Jaspal Subhlok. CMU was an
exceptional and friendly place to work, and in particular the theory conmiu-
nity was very inspiring.

I have learned a lot from .Jeff Edmonds, Russell Impagliazzo, Pavel
Pudlik, Vojt6ch R6dl and Avi Wigderson during our joint work on prob-
lems not related to this thesis.

iii

My colleagues from Prague, Jan Krajkcek, Pavel Pudlgk, Antonin Sochor,
and my co-advisor during my first year at CMU, Daniel Leivant, encouraged

me to come to CMU when I was not sure that it was the right decision.
Mathematical Institute of the Academy of Sciences of the Czech Republic

allowed me an extended leave of absence to go to CMU.
From the many other people who made my life here more pleasant I would

like to name Alex Ignjatoviý, Anja Feldmann, Tom Stricker, Sven Koenig,

Peter Jansen, Rachel Rue, Dennis Dancanet and Jeff Shuffelt.

I am grateful to my parents for everything that they taught me, for their

guidance and understanding.
But most of all, I thank my wonderful wife Irena for her patience and

support during my four years here that have been so long for her.

iv

To my wife and my parents

v

vi

Contents

1 Introduction 1
1.1 On-line scheduling of parallel jobs 1
1.2 Randomized on-line scheduling of sequential jobs 4
1.3 Outline 5

I A model and results for scheduling parallel jobs 7

2 The model 7
2.1 Parallel machines and network topologies 7

2.2 Parallel jobs and virtualization 8
2.3 Parallel job systems and schedules 9
2.4 The scheduling problem and scheduling algorithms 10
2.5 The performance measure 11

3 Practical motivation 11

4 Our results 13
4.1 Scheduling without dependencies 13
4.2 Scheduling with dependencies 14

4.3 Structure of dependencies 16
4.4 Technical assumptions 17
4.5 History of the problem 17

5 Discussion of the results 18
5.1 Randomization 19
5.2 Network topology and greedy algorithms 20

5.3 Virtualization 21

5.4 The size of the jobs 22

6 Previous models and results 23
6.1 Off-line scheduling and approximation algorithms 23
6.2 Computational complexity of on-line algorithms 24

vii

6.3 Emphasis on network topology 25

6.4 Virtualization 25

6.5 Speed of processors 26
6.6 Preemption 27

6.7 Fixed release times 27

6.8 Performance measures 28

7 Notation and basic techniques 29

II Scheduling parallel jobs with no dependencies 35

8 PRAMs 35

9 Hypercubes 36

10 One-dimensional meshes 37

11 The two-dimensional mesh 42

11.1 Deterministic algorithms 42

11.2 Off-line scheduling 47

11.3 A lower bound on deterministic scheduling 50

11.3.1 Notation 51

11.3.2 The scheduling problem51
11.3.3 Adversary strategy 52

l1.3.4 Evaluation of the .\dversary Strategy53

I.41 Randomized scheduling 57
11.4.1 The algorithm 58

11.4.2 Probability estimates 6
11.4.3 Expected time analysis 63

12 Higher-dimensional meshes 67

12.1 Deterministic scheduling 67

12.2 Off-line scheduling 69

12.3 Randomized scheduling 71

viii

III Scheduling parallel jobs with dependencies 75

13 Scheduling on PRAMs with virtualization 75

14 Scheduling on meshes and hypercubes with virtualization 80
14.1 Algorithm s 81
14.2 Lower bound 82

15 Scheduling without virtualization 93

16 Tree dependency graphs 96

IV Randomized scheduling of sequential jobs 99

17 The model and the previous results 99

18 An improved lower bound 100

ix

x

List of Tables

1 The bounds on the competitive ratio for deterministic on-line
scheduling without dependencies 13

2 The bounds on the competitive ratio for randomized on-line
scheduling without dependencies 14

3 The bounds on the competitive ratio for deterministic on-line
scheduling with dependencies with virtualization 15

4 The bounds on the competitive ratio for deterministic on-line
scheduling with dependencies without virtualization15

5 The bounds on the competitive ratio for randomized on-line
scheduling with dependencies 16

6 Factors influencing the performance of on-line scheduling al-
gorithms 18

7 Table of symbols 31
8 Lower bounds on the competitive ratio for randomized on-line

scheduling of sequential jobs 100

xi

xii

List of Figures

1 The relation between A and the competitive ratio for PRAMs,
using virtualization 22

2 The relation between A and the competitive ratio for PRAMs,
without using virtualization 22

3 The partition of the mesh used in the algorithm BALANCED
PARALLEL

4 An example of the partition of the mesh used in the algorithrrm
OFFLINE 49

5 The partition of the mesh used for sampling in the algorithm
SAMPLE 59

6 The job system used in the proof of the lower bound for on-line
scheduling on PRAMs with virtualization 77

7 A typical instance of a job system used in the proof of the lower
bound for randomized scheduling on one-dimensional meshes.. 85

8 An optimal on-line schedule for the sequence of jobs used in the
lower bound for randomized on-line scheduling of sequential jobs. 102

9 An optimal off-line schedule for the sequence of jobs used in the
lower bound for randomized on-line scheduling of sequential jobs. 102

xiii

xiv

1 Introduction

This thesis is a theoretical study of scheduling jobs on parallel machines when
only partial information about them is available in advance. We study how
the length of the schedule changes under the influence of various factors, such
as the use of randomization, the presence of dependencies between jobs, the
choice of network topology, the use of virtualization, and the maximal size
of jobs. We prove tight or very close upper and lower bounds on the best
possible performance of on-line scheduling algorithms for many combinations
of these factors, thus giving an essentially complete picture of how they
interact and together influence the performance and methods for scheduling.

Our on-line scenario reflects the real life situation where we rarely have full
information about the jobs that we wish to schedule; similarly, the factors
and network topologies we study are derived from practical concerns. We
believe that with the development of larger parallel machines and increase of
the amount and variety of applications performed on them, the results of this
thesis will become relevant for the choice of the scheduling strategies used in
practice.

1.1 On-line scheduling of parallel jobs

Imagine that we have a massively parallel machine with processors arranged
in a rectangular grid. This machine is used by a number of users who submit
different parallel jobs to be executed on the parallel machine. Each job
will run for some fixed time, called its running time, regardless of when we
execute it. But we do not know the running times in advance, the only way
to determine the running time of a job is to execute it-this is what we call
an on-line problem. Our task is to schedule a given set of jobs so that the
total time is as small as possible.

Some parallel jobs may make use of all available processors. Other jobs
may be able to use only a limited number of processors efficiently: they
request a rectangular grid of some smaller size, and can be executed on
any subset of processors that form such a grid. We assume that the grid
structure has to be preserved because efficient parallel programs are written

for a particular network topology and in general it is impossible to execute
them efficiently on a set of processors with a different network topology. We
can schedule more than one job, as long as we can satisfy the requirements
of all scheduled jobs simultaneously.

Scheduling may also be constrained by dependencies between different
jobs. This means that it may be the case that a job cannot be started before
some other jobs are finished. In fact, in the on-line problem we might not
even know about the existence of a job until all jobs on which it depends are
finished. Our schedule has to respect these constraints.

Once a job is started, it has to be completed on the same processors
without stopping, it cannot be moved to other processors or stopped and
restarted later on the same or different processors.

This problem can be viewed in a very geometric way. We have an empty
square representing the machine with processors arranged in a square grid,
and a set of rectangles that represent the jobs that have to be scheduled.
At the beginning we want to tile the square by the rectangles so that a
large fraction of the space is used: already this is a nontrivial problem. But
in the on-line setting, and especially in the presence of dependencies. the
situation gets much worse. After some jobs finish, the available processors
may occupy a region that is much more complex and difficult to tile than
the original square; in fact it might be impossible to tile it by the remaining
rectangles. It is this interaction of the geometric structure of the machine
with the on-line situation that makes the problem difficult.

We study this problem not only for two-dimensional meshes as intro-
duced above, but also for a variety of other network topologies. PRAMs.
hypercubes, one- and higher-dimensional meshes. We claim that efficient
on-line scheduling is possible for all these topologies, both with and without
dependencies. However. the performance depends significantly on various
factors.

Not surprisingly, the presence of dependencies has a major influence. Not
only is the performance without dependencies significantly better. but also
ttle influence of other factors, discussed below, changes dramatically.

The network topology of the machine is very important both with and

2

without dependencies. For more complex networks it is necessary to use more
sophisticated algorithms and the optimal performance is worse, especially in
the presence of dependencies. We show that the greedy method, which is a
natural method for on-line scheduling, works very well for simple machines
but is not efficient for more complex ones.

Another important factor is whether the algorithm is allowed to make
use of randomness. Without dependencies, we give a randomized algorithm
for meshes which has much better performance than an optimal determin-
istic one. We know of only one other result that shows for some model of
on-line scheduling that randomization provably improves the performance-
namely the result of [BFKV92] on randomized scheduling of sequential jobs
on two processors, which we discuss in Section 17. However, in that result
the improvement is only by a small constant factor, whereas in our case the
improvement is much larger; also our technical tools are different and much
more involved.

Surprisingly, in contrast to the randomized algorithm above, we demon-
strate that with dependencies randomization cannot improve the perfor-
mance significantly.

We show that to achieve overall efficiency of scheduling with dependen-
cies, it is essential to schedule some jobs on a smaller number of processors
than they request, even though it means that their running times increase

proportionally. This technique of running a job on a smaller number of pro-
cessors than it could use is called virtualization and it is a standard tool in
the design of parallel algorithms. Our work shows its importance in another
area by demonstrating that it is a necessary and useful technique for efficient
on-line scheduling of parallel jobs. If ve bound the maximal size of jobs (the
requested number of processors), it improves the optimal performance in the
presence of dependencies. Without dependencies, neither bounding the size
of jobs nor using virtualization has a significant influence.

We are interested in theoretical aspects of this problem, abstracting from
some questions that may be important for practical systems. However. the

additional costs that we neglect are small, if the jobs do not have extremely
short running times, which is usually the case. We assume that the startup

3

costs are included in the running time of a job, which means that we neglect
the fact that these costs may depend on the particular placement of the
jobs. We also do not consider the costs of communication between dependent
jobs, and between the parallel machine and the users. We do not consider
the overhead of the scheduling algorithm; however, all our algorithms are
simple and easy to implement even in a distributed environment, hence this
overhead is very small.

1.2 Randomized on-line scheduling of sequential jobs

For sequential jobs (jobs that require only one processor) we consider another
model, which was studied before in [Gra66, GW93, BFKV92, KPT94].

This model is essentially a modified version of the game of Tetris. We
have some fixed number of columns. Rectangles arrive one by one, each of
them is one column wide and extends over one or more rows. We have to
put each rectangle in one of the columns. The goal is to minimize the total
number of rows that are at least partially used by the rectangles.

In this scenario the columns represent the processors, rows represent the
time steps and the rectangles represent the jobs. The jobs are sequential,
which is represented by the requirement that every rectangle is only one
column wide. The running time is represented by the height of a rectangle.
The running time is known when a job arrives, unlike in our model for parallel
jobs. The jobs arrive one by one, as soon as a job arrives, the scheduler has
to assign it to one of the processors.

In this model, the problem is completely solved only for two processors, in
which case an optimal randomized algorithm is known and it is better than
the optimal deterministic algorithm. For more processors, the best known
algorithm is deterministic, which means that we do not know how to make
use of randomization at all.

We prove a lower bound on the performance of randomized algorithms
in this model, which improves significantly on the previously known bounds
for more than two processors. It also gives significant insight about how a
randomized algorithm matching this bound has to work. However, we are
not able to give such an algorithm at this time.

4

1.3 Outline

In the first three parts of the thesis we study scheduling of parallel jobs. In
Part I we introduce our model for scheduling of parallel jobs, summarize our
results and present some basic techniques. In Part 1I we prove the results
about scheduling without dependencies, and in Part III we prove the results
about scheduling with dependencies.

The result on scheduling of sequential jobs is presented in Part IV, which
includes the definitions and overview of the results and previous work. This
part is completely self-contained and independent of previous parts.

.5

6

Part I

A model and results for
scheduling parallel jobs
We first define our model and discuss the practical motivation Sections 2
and 3. Then in Sections 4 and 5 we present and discuss our results. We
discuss some possible alternatives to our model and related work in Section 6.
Finally, in Section 7 we introduce some basic technical tools and notation
used in Parts II and III.

2 The model

2.1 Parallel machines and network topologies

For our purpose, a parallel machine with a specific network topology is an
undirected graph where the nodes represent processors and the edges repre-
sent the communication links between the processors. A set of job types is a
collection of subgraphs of the machine that can be requested by a job. Each
job requests a particular job type, which means that it can be scheduled on
any subgraph of the machine isomorphic to its job type. We assume that on
any machine a job may request the whole machine (if it uses full parallelism)
or a single processor (if it is an inherently sequential job). In our represen-
tation it means that the set of job types always contains at least the graph
representing the whole machine and the graph with a single node.

Let us define the network topologies that we consider in this thesis. The
simplest theoretical model of a parallel machine is a PRAM, which supports
direct communication between any two processors. We represent a PRAM
machine with N processors as a complete graph with N nodes, which reflects
the fact that direct communication between any two processors is supported.
Available job types are all complete graphs with up to N nodes. This rep-
resents the fact that a job requesting p processors can be executed on any

7

subset of p processors.
Machines whose underlying topology is a d-dimensional mesh are repre-

sented by gid graphs of dimension d. Job types are all grids with dimensions
smaller than or equal to the dimensions of the machine. The one-dimensional
mesh machine consists of N processors arranged on a line, each of them is
connected to its neighbors. Any job must be executed on a connected seg-
ment cf the machine. Thus the job types are all contiguous segments with
up to N processors. A two-dimensional n1 x n2 mesh machine is represented
by a rectangular grid with width n, and height n2. The set of job types
is the set of all smaller rectangular grids. In contrast to PRAMs and one-
dimensional meshes, in the case of two-dimensional meshes the job types are
not determined by the number of processors, since we distinguish between a
10 x 10 rectangle and a 5 x 20 rectangle.

A d-dimensional hypercube has N = 2d processors indexed by vectors of
d bits. Two processors are connected if their indices differ in exactly one bit.
Available job types are all d'-dimensional subcubes for d' < d.

2.2 Parallel jobs and virtualization

A parallel job is characterized by the job type G and the running time t on
a set of processors of that job type. We assume that all processors run at
the same speed, thus if a job is executed on two isomorphic subgraphs, the
running times are equal. The work of a job is tIGI, where IGI is the size of
the job., i.e., the number of processors requested by the job. A sequential job
is a job requesting one processor.

An important fact is that any parallel job can be scheduled on fewer
processors than it requests. In the extreme case we can run it on a single
processor. Then all the work is done by that processor, which increases the
running time to the product of the requested number of processors and the
original running time of the job. In general, a job is executed on a smaller
set of processors, each of them simulating several processors requested by the
job, and the running time is proportionally larger. This technique is called
virtualization and can be implemented by the operating system without any
knowledge of the algorithm executed by the parallel job [HB84, Sar89, BleOO,

8

SOG+94]. Virtualization yields good results if the mapping of the requested
processors on the smaller set preserves the network topology. This can be
achieved for machines with regular topology, which includes all machines
considered in this work, PRAMs, meshes and hypercubes.

A job requesting a machine G with running time t can run on a machine G'

in time a(G, G')t, where a(G, G') is the simulation factor [BCH+88, KA86].
Neither the running time nor the work can be decreased by virtualization, i.e.,
a(G, G') > max(l, IGI/IG'I). If the network topology of G can be efficiently
mapped on G', che work does not increase. We assume that the simulation
assumptions always preserve the work. This is a reasonable assumption, since
efficient mappings exist for all network topologies we consider.

Under this assumption, a job which requests p processors on a PRAM
(resp. one-dimensional mesh) can be simulated efficiently on a PRAM (resp.
one-dimensional mesh) of p' processors for p' < p and the running time
increases time by a simulation factor of p/p'. A job requesting an a x b mesh
can be simulated on an a'x b' mesh for a' < a and ' < b and the running
time increases by by a simulation factor of ab/a'b'. A job requesting a d-
dimensional hypercube can be run on a d'-dimensional hypercube for d' < d
and the running time increases by 2 -d-'.

2.3 Parallel job systems and schedules

A parallel job system (without dependencies) is a collection of parallel jobs.
A parallel job system wnith dependencies is a collection of jobs with the depen-
dencies given by a directed acyclic graph called the dependency graph. The
nodes of the graph correspond to the jobs and edges correspond to dependen-
cies between the jobs. A job can be scheduled only when all its predecessors
in the dependency graph are finished.

A schedule is an assignment of a set of processors and a time interval to
each job such that all requirements given by the job types, running times and
dependencies are satisfied. That means that (1) the processors assigned to a
job correspond to its job type or can simulate it using virtualization. (2) the
length of the time interval assigned to a job is its running time multiplied by
the simulation factor, if virtualization is used, and (3) if there is a dependency

9

between two jobs, then the time interval assigned to the first job ends before
the interval assigned to the second job starts. A processor can be assigned
to at most one job at any time.

Once a job is started on some processor or a set of processors, it has to
run on them until completion. We do not allow a job to be preempted, i.e.,
to move it to a different set of processors where it would continue to run.
We also do not allow a job to be stopped and restarted later on the same or
different processors.

2.4 The scheduling problem and scheduling algo-
rithms

A scheduling problem specifies a network topology together with a set of
available job types and simulation factors, whether dependencies are allowed
and whether virtualization can be used. As a network topology usually de-
termines the job types and simulation factors in a natural way, we omit this
part of the specification most of the time. An instance of the scheduling
problem is a parallel job system (with dependencies, if they are allowed) and
a machine with the given topology. The output is a schedule for the given
job system on the given machine.

A scheduling algorithm (for a given scheduling problem) produces a sched-
ule for any instance of the problem. A scheduling algorithm is off-line if it
receives the complete information as its input, i.e., all jobs, their dependen-
cies and running times. In the on-line problem. the running times are not
given as a part of the input, but can only be determined by executing the jobs.
For on-line algorithms, we distinguish two notions, depending on whether the
jobs and their resource requirements are given in advance or only when the
jobs become available. We say that an algorithm is on-line if the running
times are only determined by scheduling the jobs and completing them. but
the dependency graph and the resource requirements may be known in ad-
vance. An algorithm is fully on-line if it is on-line and at any given moment
it only knows the resource requirements of the jobs currently available but
has no information about the future jobs and their dependencies.

10

2.5 The performance measure

We measure the performance by the length of a schedule, which is the time
when the last job finishes (the makespan). An optimal schedule for a given
job system is a schedule with the minimal length. An optimal schedule can
be computed off-line, with knowledge of all running times and dependencies,
and with unlimited computational power.

An on-line algorithm is evaluated by the competitive ratio, introduced by

Sleator and Tarjan in [ST851, which compares the performance achieved by
the on-line algorithm to the optimal schedule. In the case of a scheduling
algorithm, the competitive ratio for a given input is the ratio of the length

of a schedule produced by the on-line algorithm to the length of an opti-

mal schedule. The competitive ratio of an on-line algorithm is the maximal
competitive ratio over all inputs. Equivalently, we say that a scheduling al-
gorithm is a-competitive if for every input it generates a schedule which is

at most a times longer than the optimal schedule. A randomized scheduling

algorithm is oa-competitive if for every the expected length of the schedule
S generated by the algorithm is at most a times longer than the optimal
schedule for each instance; the expectation is taken over the random bits of

the scheduling algorithm.

3 Practical motivation

Our model is motivated by scheduling on massively parallel machines in two
different scenarios.

In the first scenario, the massively parallel machine is running in a batch
mode for some period of time. All jobs from different users are submitted
in advance and their degree of parallelism is known, but the running times
might be unknown. In practice, supercomputer centers typically run their

computers in a similar scenario for at least some part of the time. Typically

this is used for computationally intensive jobs with limited input and output.

for which the costs that we neglect are relatively small. Thus this scenario

matches our model of scheduling without dependencies very well. (We discuss

11

the variation of this scenario when jobs are not given in advance but arrive
at some fixed times in Section 6.7.)

In practice, the scheduling problems are solved by very simple heuristics.
The parallel machine is typically partitioned into a few partitions (e.g, a
CM5 machine with 512 processors can be divided into 5 partitions of 256,
128, 64, 32 and 32 processors). Jobs can require only one of these few sizes,
and a separate queue is maintained for every partition. If there are no jobs
for one partition, its processors are left unused. Jobs requiring the whole
machine are run in special batches. In addition, to aid in scheduling, users
are often required to give an estimate of the running time of their job. While
such simple heuristics might be sufficient for the size and load of the parallel
computers today, it is clear that this is not a solution that can satisfy growing
demands in the future.

In the second scenario, a parallel job system with dependencies can be a
result of a decomposition of a large task into subtasks that might differ in
the degree of parallelism that can be used efficiently. Such a decomposition
can be provided by a programmer, or it could be obtained automatically by
a sophisticated compiler. Typically in such a decomposition the amount of
communication between the separate subtasks is small. This matches our
model of scheduling with dependencies.

Current research and methods for design of parallel compilers are focused
on partitioning the processors and assigning them to the subtasks during the
compile time; this assignment is then fixed and is independent of the input
data [Sar89, Sub93. SOG+94.. This approach is suitable if the dependency of
the running times on the input is small, since then the necessary estimates of
the running times of the subtasks can be based on the previous performance.
However, for many applications the running times depend significantly on the
input. To achieve a satisfactory performance for such tasks. it is necessary
to address the on-line scheduling problem.

12

4 Our results

For most network topologies we prove tight or very close lower and upper
bounds on the competitive ratio, both with and without dependencies.

The technically most difficult results are the bounds for randomized
scheduling, specifically our randomized constant-competitive algorithm for
meshes without dependencies, and our lower bound of S(, N) for ran-
domized scheduling on one-dimensional meshes with dependencies. Of the
results for deterministic scheduling, the most difficult are the lower bound
of 1O(vqoglog7N) for scheduling on meshes without dependencies and the
tradeoff for scheduling on PRAMs with dependencies using virtualization.

In all the results, N denotes the number of processors of the machine.

4.1 Scheduling without dependencies

For deterministic on-line scheduling without dependencies we obtain opti-
mal or almost optimal algorithms for all basic network topologies that we
study, PRAMs, hypercubes, one- and two-dimensional meshes, and higher-
dimensional meshes if the dimension is constant. The bounds on the com-
petitive ratio for deterministic scheduling are summarized by Table 1. The
lower bound of 2 - - uses only sequential jobs and is from [SWW91J; we
present it in Section 7.

Topology Upper bound Lower bound

two-dim. mesh O(VF'logTogT) '1(x/log log)

PRAM I- N) - _
hypercube "2- ,--

IV N

r;ae-dim. mesh 2.5 2

d-dim. mesh O(dlog dvilog log N + (2dlog d)d) , (VfoglogVN)

Table 1: The bounds on the competitive ratio for deterministic on-line
scheduling without dependencies.

13

If randomization is allowed, we obtain an on-line algorithm for scheduling
on d-dimensional meshes for which the competitive ratio depends only on
d. Moreover, under some restrictions we obtain a much stronger result, an
algorithm with competitive ratio that does not even depend on the dimension
of the mesh. The restrictions are that the dimensions of the jobs and of the
mesh are powers of two, and all the dimensions of each job are strictly smaller
than the corresponding dimensions of the mesh (note that this implies that
each dimension of a job is at most a half of the corresponding dimension
of the mesh, since all dimensions are powers of two). See Table 2 for the
summary of these results.

Upper
Topology Restrictions bound

two-dim. mesh none 0(1)

d-dim. mesh dimensions of the mesh are powers of two: 0(1)
dimensions of jobs are powers of two and
smaller than the dimensions of the mesh

d-dim. mesh none 0(4 d)

Table 2: The bounds on the competitive ratio for randomized on-line schedul-
ing without dependencies.

4.2 Scheduling with dependencies

For scheduling with dependencies we study separately the cases with and
without virtualization, since they are quite different.

For deterministic scheduling we also study the dependence of the com-
petitive ratio on the size of the largest job. We assume that .V is the num-
ber of processors and that no job requests more than AN processors, where
0 < A < 1 is a constant. For scheduling on PRAMs we obtain tight tradeoffs
between A and the optimal competitive ratio in both cases, with and without
virtualization.

14

With virtualization, we obtain an optimal algorithm for one-dimensional
meshes and efficient algorithms for hypercubes and higher-dimensional
meshes. Table 3 summarizes the results on deterministic scheduling with
virtualization.

Topology Restrictions Upper bound Lower bound

PRAM none (A = 1) 2+4) 2+4
PRAM 0 < A < 1 2+ ••- 2+ 2'A-2

__________ ________ 2A 2A

one-dim. mesh none 0 (lolNvN log logI NN)

d-dim. mesh none (O(, loxN)) •j oN)

hypercube none 0(logN)

Table 3: The bounds on the competitive ratio for deterministic on-line
scheduling with dependencies with virtualization; 0 = (V5- 1)/2 • 0.618
is the golden ratio.

Without virtualization, in addition to the tradeoff for PRAMs mentioned
above, we prove that no efficient scheduling is possible if the size of the jobs
is not restricted. See Table 4 for the results.

Topology Restrictions Upper bound Lower bound

arbitrary none (A = 1) N N

arbitrary 0 < A < I I +

PRAM 0<A<L 1+ I

Table 4: The bounds on the competitive ratio for deterministic on-line
scheduling with dependencies without virtualization.

Even if randomization is allowed, we cannot use it efficiently in the pres-
ence of dependencies. We prove a lower bound showing that no randomized
algorithm for scheduling on one-dimensional meshes with virtualization has
a better competitive ratio than E(*, N). Thus our deterministic algorithm

log15og N

15

is within a constant factor of the optimal competitive ratio. We also prove
that with randomization still no efficient scheduling without virtualization is
possible if the size of jobs is not restricted; we get a lower bound of N/2 in
this case. See Table 5 for these results.

Topology Virtualization Lower bound

one-dim. mesh allowed fn(OZNN)

arbitrary not allowed N/2

Table 5: The bounds on the competitive ratio for randomized on-line schedul-
ing with dependencies.

4.3 Structure of dependencies

In addition to the bounds on the competitive ratio we prove that for on-line
scheduling with dependencies the structure of the dependency graph is not so
important. The following theorem which says that any on-line algorithm for
scheduling job systems whose dependency graphs are trees can be converted
to an algorithm for scheduling general dependency graphs with the same
competitive ratio.

Theorem 4.1 Let an on-line scheduling problem with dependencies be given
(i.e., a specific architecture and simulation factors). Then the optimal corn-
petitive ratio for this problem is equal to the optimal competitive ratio for
a restricted problem in which we allow only job systems whose dependency
graphs are trees as inputs.

This theorem is easy to prove for fully on-line algorithms, since then
the algorithm does not know the dependency graph in advance. The same
theorem holds even for general on-line algorithms, where the algorithm knows
the dependency graph and all job types before the scheduling starts, but a
more sophisticated argument is necessary.

16

4.4 Technical assumptions

All our lower bound results assume that the running time of a job may be
zero. This is only a convenient technical assumption which can be removed
easily. As all our proofs are constructive, we simply replace all zero times
by unit times and scale all other running times to be sufficiently large. This
only decreases the lower bounds by arbitrarily small additive constants.

The lower bounds for PRAMs for scheduling with dependencies give the
best constant competitive ratios that can be achieved for all N if A is fixed.
There is a small additional term that goes to 0 as N grows.

4.5 History of the problem

The model of deterministic on-line scheduling of parallel jobs without de-
pendencies was first introduced and studied in a joint paper with Anja Feld-
mann and Shang-Hua Teng [FST91]. That paper contains the results of
Theorem 10.1 from Section 10, Sections 11.1 to 11.3 and Section 12.1 of this
thesis. The journal version [FST941 of the paper [FST91J contains all the
results above together with the results of Sections 8, 9 and the rest of the
Section 10.

The results on randomized scheduling without dependencies from Sec-
tions 11.4, 12.2 and 12.3 has not been published before. Sections 11.1. 11.2
and 12.1 are substantially revised versions of the material from the pa-
per [FST91].

Deterministic on-line scheduling with dlependencies was introduced and
studied in joint papers with Anja Feldmann. Mling-Yang Kao and Shang-
Hua Teng [FKST92. FKST93]. Those papers contains the results of Sec-
tions 13, 14.1, 15 and 16.

The results on randomized scheduling without dependencies from Sec-
tion 14.2 and part (iii) of Theorem 15.1 in Section 15 has not been published.

The claim in [FKST92. FKST93] that the O(",•vN)-competitive algo-

rithm for scheduling on hypercubes is optimal is wrong; we have a matching
lower bound at the present time.

17

5 Discussion of the results

Our results show, not surprisingly, that scheduling with dependencies is sig-
nificantly harder than scheduling without dependencies, which is what we
expected. What is somewhat surprising is how much harder it is in some
cases; for example without dependencies we have a 2.5-competitive algorithm
for one-dimensional meshes, while with dependencies no algorithm for one-
dimensional meshes can achieve a better competitive ratio than 0(, N)Slog logsN

even if both randomization and virtualization are allowed.
It is very interesting to compare the influence of various factors on the

performance of scheduling with and without dependencies, see Table 6. We
examine these factors one by one in the rest of this section.

Influence Influence
Factor without dependencies with dependencies

randomizat ion yes no

network topology small yes

virtualization no yes

size of the jobs no yes

Table 6: Factors influencing the performance of on-line scheduling algo-
rithms.

The performance of scheduling with dependencies depends significantly
on virtualization, and the maximal size of a job. while for scheduling with-
out dependencies these factors are not very important. On the other hand.

randomization does not help much for scheduling with dependencies. while
it significantly improves performance of scheduling without dependencies on
meshes. Network topology has a big influence on the performance of schedul-
ing with dependencies: without dependencies the changes in performance are
smaller, but for more complex topologies the algorithms are significantly
more complex.

18

5.1 Randomization

For scheduling with dependencies we can prove that the randomization does
not help, and the optimal competitive ratio for the one-dimensional mesh is
still e(---), which is achieved by a deterministic algorithm.

On the other hand, without dependencies, we can use randomization to
significantly improve the competitive ratio for scheduling on two- and higher-
dimensional meshes. If the dimension of the mesh is constant, the optimal
competitive ratio for deterministic algorithm is e(v/10lgog N), while our ran-
domized algorithm achieves a constant competitive ratio. If the dimensions
of the machine and of the jobs are powers of two, and there are no large jobs,
the competitive ratio does not even depend on the dimension of the mesh.
If there are no restrictions, the competitive ratio is 0(4d), which is still sig-
nificantly better than the deterministic algorithm, where the dependency on
d is O((2d log d)d). Note that in practice d is very small, typically a con-
stant, as arbitrarily large meshes can be built without changing d. Hence the
competitive ratio is not that large even if the dependency on d is exponential.

To achieve such a strong result, we estimate for each job size the total
work of all jobs of that size based on a small random sample. However, it is
not clear how this can lead to a constant competitive ratio, since the number
of different job sizes depends on the number of processors, and in particular it
is exponential in d. We use Chemoff-Hoeffding bounds in a powerful way to
prove that with some constant probability all of the many different instances
of sampling give a good approximation of the work.

These results are particularly interesting in the view of the fact that the
lower bound for deterministic algorithms for scheduling on one-dimensional
meshes with dependencies in [FKST93I and the lower bound for deterministic
algorithms for scheduling on two-dimensional meshes without dependencies
in Section 11.3 both use a very similar technique. Yet the first lower bound
generalizes to randomized algorithms and the other one does not.

It is also interesting that randomization is used in our algorithm only to
randomly permute the jobs at the beginning for the purpose of sampling.
If we assume that the usage pattern of a parallel machine does not change
very fast, we could estimate the work of jobs of different sizes based on the

19

previous usage of the machine, and then schedule them very efficiently even
without randomization. This is actually used in practice, since scheduling is

sometimes done manually based on the previous experience and data. Our
result explains to some extent why it might be very useful to consider the
estimates based on previous experience. If these estimates are good, it saves
us the sampling which is a relatively expensive part of our algorithm.

5.2 Network topology and greedy algorithms

Our results show that the complexity of the network topology has a big
influence on on-line scheduling.

On the more complex machines, not only is the optimal performance
lower, but also the algorithms are more involved. The simplest algorithms
use the greedy method, which means that they schedule any available job
as soon as its resource requirements can be satisfied. This is optimal for
PRAMs, both with and without dependencies, but as the network topology
gets more complex, the performance of greedy methods decreases because
they tend to scatter the available processors and hence make them unusable
for larger jobs.

This is particularly clear without dependencies. Already for hypercubes
and one-dimensional meshes we need to modify the greedy approach. In our
algorithms we schedule the largest job whenever processors are available, as
in a greedy algorithm, but if it is impossible to schedule the largest job,
all smaller jobs are postponed as well, even if they could be scheduled im-
mediately. For the two-dimensional mesh we have to abandon the greedy
approach completely. The optimal algorithm begins by using only a small
fraction of the mesh without even attempting to use the whole mesh, and
continues with a larger fraction only when the available processors in the cur-
rent fraction become unusable. The proof of the lower bound actually shows
that this is not an arbitrary choice-no greedy-like algorithm can achieve
a substantially better competitive ratio than Q(log log N). This shows that
the general heuristic of using greedy algorithms for scheduling can be wrong
despite the fact that it works well in many previous scheduling algorithms,
see for example [Gra66, LST90, SWW91].

20

In the case without dependencies we can still keep the competitive ratio

constant by using more complex algorithms and randomization for all ar-

chitectures including the higher-dimensional meshes. However, there is still
some difference in the performance since the constants are higher for more
complex topologies.

On the other hand, with dependencies the performance decreases sharply
with the increasing complexity of the machine. Intuitively, the reason is that

algorithms for scheduling with dependencies have to be able to deal with the
jobs that become available later during the schedule, and hence we do not
have the option of abandoning the greedy approach completely.

5.3 Virtualization

Without dependencies, virtualization does not help us to improve the per-
formance of our algorithms. In fact, all our algorithms for scheduling with-

out dependencies do not use virtualization but are competitive even against
schedules that use virtualization. All our lower bounds for scheduling without

dependencies are valid even for algorithms that use virtualization.
This is no longer true in the presence of dependencies. The main reason

for this distinction is that without dependencies we can process all large
jobs first. But with dependencies. jobs requiring the whole machine can be

dependent on other jobs. When they become available, other jobs may be
running and we have to wait until all or most of them finish to be able to
satisfy the requirements of the large jobs. This causes an inefficiency which
can be avoided only by the use of virtualization.

This is clearlv demonstrated bv the results on scheduling with dependen-
cies when virtualization is prohibited. If we allow jobs requiring the whole
machine, no efficient scheduling is possible on any machine, even using ran-
domization. If we restrict the number of processors that a job can request
to some constant fraction of tie machine, the situation improves somewhat.
but the competitive ratio is still significantly larger than with analogous re-
striction on the size of jobs and virtualization allowed.

All our algorithms use virtu~dization only for large jobs, or can be modi-
fied to do that. This support the intuition that the large jobs are the main

21

problem, which makes scheduling with dependencies impossible without vir-
tualization.

5.4 The size of the jobs

With virtualization, efficient scheduling is possible even with no restriction
on the size of jobs. However, even then the competitive ratio depends on the
maximal allowed size of jobs.

Our tight tradeoffs between the maximal size of a job and the optimal
competitive ratio for deterministic scheduling on PRAMs with dependencies
both with and without virtualization are illustrated on Figures 1 and 2.

5 5

4 4

I 2

0 0.5 1 0 0.5 1

Figure 1: The relation between A and Figure 2: The relation between A and

the competitive ratio for PRAMs. its- the competitive ratio for PRAMs.

ing virtualization without itsing virtiualization.

If the size of all jobs is a small fraction of the total number of proces-

sors, the competitive ratio is in both cases close to 2. which is the optimal

22

competitive ratio even if we allow only sequential jobs and no dependen-
cies. If the maximal size of jobs increases, the competitive ratio increases
to 2 + 4• , 2.618 if virtualization is allowed, but with no virtualization it is
unbounded.

6 Previous models and results

6.1 Off-line scheduling and approximation algorithms

First, let us point out that the exact solution of off-line scheduling problems
is NP-hard even for very simple special cases involving only sequential jobs,
see [GJ791. For parallel jobs, Blaiewicz, Drabowski and Wglarz [BDW86]
proved that if the number of processors is a part of the input, optimal schedul-
ing is NP-complete. Later Du and Leung [DL81] improved this result and
showed 1hat optimal scheduling is NP-hard for scheduling on two processors
with dependencies and five processors without dependencies.

Since optimal scheduling is hard, there have been a significant interest
in approximation algorithms. However, it is NP-complete even to decide if
"a set of sequential jobs with unit running times and with dependencies has
"a schedule of length three on a given number of processors [LRK78]. This
result implies that it is NP-hard to approximate the length of an optimal
schedule for sequential jobs within a factor better than 4/3. For parallel
jobs. it is easy to see that even deciding if a set of jobs with unit running
times without dependencies has a schedule of length two is as hard as NP-
complete problem PARTITION, and hence it is NP-hard to approximate the
length of an optimal schedule within a factor better than 3/2

Approximation algorithms are related to this thesis, since every on-line
algorithm is also an approximation algorithm, but the converse is not neces-
sarily true. Our on-line algorithm have similar or even better performance
than the previously known approximation algorithms. Most previous results
on scheduling parallel jobs do not consider the network topology and thus in
our model they are valid only for scheduling on PRAMs.

The results of Graham [Gra66] on list scheduling give an approximation

23

algorithm with an approximation ratio of (2 - k) for scheduling of sequential
jobs on N processors without dependencies. This algorithm is in fact on-line
and can be easily generalized for parallel jobs, which gives our result in
Section 8. A similar result appears also in [TWY92].

Wang and Cheng [WC921 give an approximation algorithm for scheduling
on PRAMs with dependencies which achieves approximation ratio of 3. Their
algorithm is not on-line. We improve this result in Section 13 by presenting
an on-line algorithm which achieves a competitive ratio of approximately
2.618, which is optimal for on-line algorithms.

There have been some results on approximation algorithms for scheduling
of independent jobs on hypercubes and one-dimensional meshes. Chen and
Lai [CL881 give an algorithm for hypercubes that achieves the approximation
ratio of 2 - !-. Their algorithm is not on-line, however, it is very similar to
our on-line algorithm from Section 9 which achieves the optimal competitive
ratio of 2 - 4.

Scheduling on one-dimensional meshes without dependencies is equivalent
to packing two-dimensional rectangles into a two-dimensional bin so that the
total height is as small as possible. For a long time the best known algorithm
was by Sleator (Sle8O] which achieves an approximation ratio of 2.5. This
algorithm is not on-line, and our 2.5-competitive algorithm in Section 10
is very different. Recently Steinberg [Ste931 obtained an algorithm with an
approximation ratio of 2. This algorithm uses the information about running
times in a crucial way and hence it is not on-line.

6.2 Computational complexity of on-line algorithms

The competitive ratio does not measure the amount of computation done by
the on-line algorithms in any explicit way. However, typically the algorithms
that are good from the viewpoint of competitive analysis are also simple and
do not require a large amount of computation.

This is true in our case. The most complex operation done by our schedul-
ing algorithms is to sort the jobs according to their size. This can be done
very fast in parallel, since the number of different sizes is at most propor-
tional to the number of processors. Once the jobs are sorted, they are either

24

processed in a predetermined order, or the different sizes are treated inde-
pendently, and no significant amount of computation is needed.

The algorithms can also be executed in a distributed environment, since it
is possible to implement them with a very limited amount of communication.

6.3 Emphasis on network topology

The new feature of our model is that we study on-line scheduling on concrete
network topologies. Only a small fraction of previous work on scheduling of
parallel jobs takes into account the network topology of the machine [Sle80,
CL88, TWY92]; in all cases the focus is on approximation algorithms of
independent jobs. The rest of previous literature on scheduling is concerned
only with the number of processors required by a job, not with the constraints
of the concrete network topology; thus from our point of view, these results
apply only to the simplest network topology, PRAMs.

Various network topologies have been studied extensively, but with a
different emphasis. A typical questions in this area is whether it is pos-
sible to simulate one network by another network (either with a different
topology, or with a different size), and how efficient the simulation can
be [BCH+88, KA86, Ran871. Such results are closely related to the tech-
nique of virtualization. Virtualization is possible only if the simulation of
the given network by a smaller one can be efficient. Therefore the most im-
portant aspect of these results for us is that they justify the technique of
virtualization for simple cases and study its limits for more complex network

topologies.

6.4 Virtualization

Virtualization is possible on practical systems with a regular topology, pos-
sibly with some additional costs that we aeglected. These costs are small
if the parallel job uses parallelism to reduce its running time, and other re-
sources are not critical. In some cases a job might need some amount of
parallelism to satisfy other resource requirements. For example, it might be
memory-intensive job, and if there is a limited amount of memory available

25

to each processor (which is usually the case), we have to schedule it on a
sufficient number of processors to satisfy its memory requirements. In such
a case virtualization is not available at all or only to a limited degree. Since
our algorithms use virtualization only for large jobs, our results may still
apply or be modified for the particular application.

We assume that virtualization preserves the work. In other words, this
means that up to a certain number of processors a parallel job scales perfectly
and the running time decreases proportionally, and after that increasing the
number of processors does not improve the running time. Examples given
in [SOG+94] show that this approximation closely matches the behavior of
many tasks encountered in practice.

For approximation algorithms some research has been done under the
assumption that virtualization does not preserve the work [TWY92]. In
the off-line setting, an approximation algorithm can use the full information
about the running time of a job on any number of processors. In particular,
it can find the number of processors such that the work of the job is minimal,
which is essential for efficient scheduling. In the on-line case, we assume no
knowledge of the running times. If we do not even know how the work of
the job depends on the number of processors, then no efficient scheduling is
possible.

6.5 Speed of processors

In our model we require that all processors run with the same speed. Our
motivation of massively parallel computation assumes one parallel machine
for processing parallel jobs with possibly high amount of communication be-
tween the processors and such parallel machines are designed with processors
of the same speed. It is difficult to imagine a parallel job that can run on pro-
cessors of possibly different speeds, since in such cases it is usually possible
and more efficient to break up the job into sequential jobs with dependencies.

In the case of sequential jobs, processors of different speeds are motivated
by the environment in which many sequential machines (possibly different)
are connected by a communication network. This model is outside the scope
of this work. It leads to interesting problems studied for example in [LST90,

26

SWW91, ST931.

6.6 Preemption

In our model, it often happens that many processors are available but not
in the requested configuration. If we are allowed to preempt a job, i.e., to
move a running job to different processors, or at least to restart a job on
different processors, we can reorganize the running jobs periodically so that
the unused processors can be used more efficiently.

But on massively parallel machines, the cost of context switching, which
has to be used for preemptions and restarts is very expensive. The main
reason is that moving the data and the current state of the memory requires
high amount of communication, which can interfere with execution of other
parallel jobs. If we allow preemptions, these costs can be incurred repeat-
edly, and thus cannot be included in the running time of the job. If the
preemptions occur often, the additional costs are very high. The additional
costs of restarting a job are similar, and in addition, some jobs might not
allow restarting at all. For these reasons we consider our choice of the model
without preemption and restarts more reasonable.

For scheduling sequential jobs, preemptive on-line scheduling is studied
for example in [MPT93, SWW91].

6.7 Fixed release times

We assume that a job can be executed immediately unless it is dependent
on other jobs. However in practice a job may become available at a fixed
time, independent of other jobs. This is a motivation for a model with release
times, considered for example in [GJ79, SWW91]. In this model each job has
a fixed release time, and it cannot be executed earlier. This might appear
to be a natural and powerful extension of our model of scheduling without
dependencies.

We have two reasons showing that we do not need to incorporate the re-
lease times explicitly. First, the effect of the fixed release times can be easily

27

simulated in the model with dependencies. Second, a very general obser-
vation of [SWW91] shows that even in the model without dependencies, an

on-line problem with release times is not much more difficult than the corre-
sponding problem without release times. The intuition is that before the last
job is released, nothing important can happen, because the optimal schedule
has to contain that time interval as well. Therefore if we start scheduling
only after the last job has arrived, we lose only a small constant factor. Of
course, we do not know which job is the last one, but this is a minor tech-

nical problem which can be solved by scheduling the jobs in several batches
as follows. We first schedule all jobs available at the beginning, disregarding
the newly arrived jobs. After all of them are finished, we schedule all jobs
available at that point, and so on. Using this approach, the competitive ra-

tio is only twice as much as the competitive ratio for the algorithm used to
schedule the individual batches.

6.8 Performance measures

Intuitively, the competitive ratio can be interpreted as a value that measures
the cost of the information about the future, in our case the information
about the running times. We pay for not having the information about the

running times of jobs in advance by decreasing our efficiency by a factor
which is at most the competitive ratio. Thus, given an algorithm with a

small competitive ratio, we know that any schedule which it produces is
close to the optimal one.

In both our models, with and without dependencies, the length of the
schedule and the competitive ratio seem to be good and realistic performance
measures.

In the model with fixed release times mentioned above, using the total
length of the schedule as a performance measure is somewhat questionable.
The competitive ratio (with respect to the length of the schedule) is still

relevant to get a rough picture. As we will see later, to achieve a competitive
ratio of a, the algorithm typically has to maintain at least l/o' of the pro-
cessors busy most of the time. Hence if a' is the optimal competitivv ratio,
and the total work of the jobs is 1/o' fraction of the work that can be done

28

by the machine, it is possible to schedule all jobs; otherwise the backlog of
unscheduled jobs and the response time necessarily increase with time.

However, since the model of fixed release times is motivated mostly by an
interactive environment in which users can submit their jobs at any time, to
get more accurate and insightful results, it would be essential to consider dif-
ferent measures of performance, such as the response time. Average response
time is considered for several variants of on-line scheduling of sequential jobs
in [MPT93]. The work of [TSWY94] considers approximate off-line schedul-
ing of parallel jobs with respect to average response time. On-line scheduling
of parallel jobs with average response time as the performance measure is an
interesting area for further research outside the scope of this work.

7 Notation and basic techniques

For a given job system J' with or without dependencies, we denote the length
of an optimal schedule by Top,(J). By T(S) we denote the length of the
schedul- S, i.e., the time when the last job finishes (its makespan). A de-
terministic scheduling algorithm is a-competitive if for every job system ,'
the schedule S generated by the algorithm satisfies T(S) • o,,Top(J). A
randomized scheduling algorithm is r-competitive if for every job system J
the expected length of the schedule S generated by the algorithm satisfies

E[T(S)] _• •Topt(J), where the expectation is taken over the random bits of
the scheduling algorithm.

For proving lower bounds on the competitive ratio it is uiseful to interpret
the problem as a game between the scheduling algorithm and the adversary.
In the deterministic case the adversary chooses the number of jobs. their job
types and dependencies in advance. Then the on-line scheduling algorithm
starts scheduling them, while the adversary has complete control over the

running times of the jobs: he can stop any job at any time. To prove the lower
bound, we simulate this game, and then use the job system with running
times as specified by the adversary (luring the game as an input for the
scheduling algorithm. The actions of the scheduling algorithm are the same,
as it is deterministic and on-line.

29

For randomized algorithms we can define different models depending on
the strength of the adversary, see [BDBK+90]. Our model corresponds to
an oblivious adversary, which means that the adversary has no access to
the random bits of the scheduling algorithm. This makes the adversary
significantly less powerful than in the deterministic case.

To analyze the competitive ratio of our algorithms, we need to bound the
length of the optimal schedule. We use the following two lower bounds for
the optimal schedule.

First, the optimal schedule has to schedule the jobs that are dependent
on each other sequentially. For a given job system J, Tn,(J) denotes
the maximal sum of running times of jobs along any path in the dependency
graph; for a job system without dependences this is just the maximal running
time of a job. Clearly T...(,") :_ Top,(J) because an optimal algorithm has
to schedule these jobs sequentially; even if we use virtualization, their running
time cannot get shorter.

Second, the optimal schedule has to perform all the work of all jobs. For
a given job J E ,f. the work of .J, denoted work(J), is the product of the
number of processors it requests and its running time. We define Teff,(J) to be
the time required to perform the work of all jobs on N processors. where N is
the number of processors of the given machine. T~ff(J) = EJEJ work(J)/N.
Clearly Teff(J) _< Tt(,J). Using virtualization does not influence this fact.

because we assume that virtualization preserves the work. i.e., if a job is
scheduled on a smaller number of processors (with a given network topology.
see Section 2.2), its running time is proportionally larger.

We omit the argument J of T,,p,(j). Tma,(J) or T~ff(J) if it is clear from

the context which job system we are referring to.

To analyze scheduling algorithms, the concept of efficiency is very im-
portant. Lemma 7.1 shows that if a schedule has high efficiency except for
a short period of time. then the schedule cannot be much longer than the
optimal one.

The efficiency of a set C of currently running jobs, denoted by eft(C), is
defined as the total number of processors assigned t, a job in C divided by
N. The efficiency of a schedule at time t is the efficiency of the set of all jobs

30

running at time t, or equivalently the number of processors busy at time t
divided by N. The efficiency with respect to any subgraph of the machine
is defined similarly. Efficiency of an algorithm refers to the efficiency of the
schedule generated by that algorithm (for a particular job system); if this
algorithm is used only to schedule jobs on a part of the machine, it refers to
the efficiency with respect to that part of the machine.

For a schedule S and an a < 1, T<a(S) denotes the total time during
which the efficiency of S is less than a. Our symbols are summarized in
Table 7.

Symbol Explanation

Top"(f) The length of an optimal schedule for a job system ,.

Tm•(f) The maximal sum of running times along any path in

Ithe dependency graph of a job system Jf

Teff(J) Time required to perform the total work of all jobs in
a job system 3

T(S) The length of a schedule S

T<•(S) The total time during a schedule S when the efficiency
is less than a

Table 7: Table of symbols.

Lemma 7.1 Let S be a schedule for a job system J (with or without depen-
dencies) such that the work of each job is preserved.

(i) Let a <_ 1, 6 >_ 0. Suppose that T<c,(S) _< /3Top,(J). Then T(S) <

(/3+ a)TopL(J).
(ii) Let 0 < a1 , a2 !5 1, 1- > 0. Suppose that the efficiency of the

schedule S is at least al at all times and T<, 2(S) K_/3Topt(J). Then T(S) <
(/3 + 'I)Top,(J).

Proof. (i) is a trivial consequence of (ii) for a, = 0. (ii) The optimal
algorithm has to do at least the same amount of work as S, because in S the

31

work of each job is preserved. Hence

T• >_ a2T(S) - (a2 -(S).

Therefore

C12
T(S) <_ I--T. + (02 -)T<a,(S))

02

_<l-(1 + (02,- oi)I•)Top1 =(+1-__,_Tp

0

Another lemma, which is useful for analysis of scheduling of job systems
with dependencies, is from [Gra66]. We use it to bound the time when the
efficiency is low. Such a bound makes it possible to apply Lemma 7.1.

Lemma 7.2 (Graham, 1966) Let S be a schedule for a job system J with
dependencies. Then there exists a path of jobs in the dependency graph such
that whenever there is no job available to be scheduled, some job on that path
is running.

Proof. Let Jo be the job that finishes last. Let t, be the last time before
JO is started at which no job is available. Then there is a job J, running at
the time t, that is an ancestor of Jo in the dependency graph, as otherwise
Jo would already be available at to. By the same method construct t2 , J2,

t3 , J3, ... , tk, Jk, until there is no time with no job available before Jk is
started. Because of the way we selected the jobs, Jk, Jk-1,. Jo is a path in
the dependency graph and one of the jobs Jk,, .k-.1,,. .. , Jo is running at any
time when no job is available. 0

Now we present the example of Shmoys, Wein and Williamson [SWW91]
which proves a lower bound of 2 - - on a competitive ratio for scheduling
on any machine of N processors. This lower bound uses only sequential
jobs, and hence it is valid for any network topology. Take a job system of

N(N - 1) + I sequential jobs. The adversary assigns running time I to all
jobs except to the job that is started last by the on-line algorithm; to the last

32

job he assigns time N. The length of the schedule generated by the on-line
algorithm is at least 2N - 1. The optimal schedule takes time N, and hence
the competitive ratio is at least 2 - '.

For a particular architecture it is usually possible to specify the graph
requested by a job by a few parameters. We represent jobs on PRAMs as
(p, t), where p is the requested number of processors and t is the running
time on p processors. Jobs on hypercubes are represented as (d, t), where d
is the dimension of the requested hypercube and t is the running time. Jobs
on d-dimensional meshes are represented as (a,,..., ad, t), meaning that the
requested graph is a mesh of size a, x... x ad and t is the running time; we
always assume without loss of generality that a, _ ... > ad. Of course, the
on-line algorithms do not know the running times.

We write our algorithms in an easy to understand pseudocode. The in-
struction "wait" means that the algorithm waits until all currently running
jobs are scheduled. We say that a processor is available, if it is currently not
assigned to any job. A job is available, if all its predecessors in the depen-
dency graph are finished, and it was not scheduled yet. Note that without
dependencies any unscheduled job is available. On the other hand, with de-
pendencies it might happen that no jobs are available, but at some later time
there will be available jobs. namely those that are dependent on the currently
running jobs. Thus we can be sure that all jobs have been scheduled only
when no jobs are available and no jobs are running.

In some algorithms we do not specify exactly which job should be sched-
uled next. In that case any available job (satisfying given constraints, if
there are any) can be scheduled, and our bounds are true for any such im-
plementation of the algorithm. Sometimes we require the machine to be
partitioned into several subgraphs. It is understood that these subgraphs
have to be disjoint; possibly they do not cover the whole machine (usually
due to rounding).

By "size" and "large" we refer to the number of processors requested by
a job, while "length" and "long" refers to its time. This might be especially
confusing for one-dimensional mesh machines; we use "segment" for a con-
nected part of the machine or of the real line, while "interval" is reserved for

33

time intervals.
In reference to processor requirements of jobs, we use "require" if virtual-

ization is not allowed, otherwise we use "request" to indicate that a job can
be scheduled on a smaller number of processors.

The formula a/bc always means the same as a/(bc). All logarithms are in

base 2, unless specified otherwise.

34

Part II

Scheduling parallel jobs with
no dependencies

8 PRAMs

In this section we present an optimal (2 - k)-competitive algorithm for on-
line scheduling on PRAMs without dependencies. This is tight due to the

general lower bound presented in Section 7.
This result is essentially a generalization of Graham's results on list

scheduling of sequential jobs [Gra661 for parallel jobs.

This algorithm uses the natural greedy approach. It schedules an arbi-
trary job if sufficiently many processors are available. It does not matter
which job we choose, as long as we always schedule some job as soon as pos-

sible. As we will see later, this is not true for more complex architectures.

Algorithm GREEDY

while there is an unscheduled job J do

if some job J requires p processors and p processors are available,

then schedule J on the p processors;

wait.

Theorem 8.1 The algorithm GREEDY is (2 - -L)-competitive for a PRAM

with N processors.

Proof. Suppose that the algorithm generates a schedule of length T for a

job system J. Let p be the minimal number of busy processors during the
entire schedule. Consider the last time r when only p processors were busy.

Let J be some job running at that time. Before J is scheduled, there could
not have been p processors available, since at that point our algorithm would
schedule some job. After J is finished, there also cannot be p processors

35

available: at any time after r there has to be some job JY running that was
scheduled after r, as the efficiency is no longer minimal; and if there were

p processors available, JY would only require N - p processors and it would
already have been scheduled before r, a contradiction.

The efficiency is at least a, Z • during the entire schedule, and it less
than a 2 - -±! only when J is running. The time when J is running is

bounded by T., < Toot, hence by Lemma 7.1 we get T < (1 + N-p)T0 =

(2 -)Topt < (2 - I)Top1 . 0

9 Hypercubes

In this section we present an optimal (2- ')-competitive algorithm HYPER-
CUBE for on-line scheduling on hypercubes. The algorithm is still greedy in
the sense that if there are sufficiently many processors available to schedule
a job, some job is always scheduled. However, in contrast to the algorithm
for PRAM, we now require that the largest job is scheduled; this is always
possible due to the nice structure of the hypercube.

A similar algorithm appears in [CL881. Their variation of the algorithm
is not on-line; by using the information about running times for scheduling
they achieve a slightly better approximation ratio of 2 - -. However, for on-

line algorithms it follows from the general lower bound presented in Section 7
that it is impossible to achieve a better competitive ratio than 2 - I; hence
our algorithm is optimal.

We suppose that the jobs Ji = (di, ti) are sorted by size, d, 2 d2 >_...

d,i, where m is the number of jobs and di the dimension of a hypercube
required by the job Ji. We say that a d-dimensional subcube is normal if
the coordinates of all its processors are identical except possibly the last
d coordinates. This implies that if two normal subcubes of any dimension
intersect then one of them is a subcube of the other one. To ensure that the
space is used efficiently, the jobs are only scheduled on normal subcubes.

Algorithm HYPERCUBE

for i := 1 to m do

36

if there is a normal di subcube available,

then schedule the job Ji on it;

wait.

Theorem 9.1 The algorithm HYPERCUBE is (2 - -k)-competitive for a
hypercube of N processors.

Proof. From the properties of normal subcubes and the scheduling algorithm
it follows that whenever there is any processor available, then there is a whole
normal d-dimensional subcube available, where d is the dimension of the job
scheduled last. Since the jobs are sorted in a decreasing order according
to their dimensions, it follows that any available job can be scheduled, in
particular the largest one. This proves that the efficiency is 1 as long as
there is some unscheduled job left. The remaining time is bounded by Tm8,

and the efficiency is at least 1/N. The theorem follows by Lemma 7.1. 0

10 One-dimensional meshes

In this section we present two algorithms for scheduling on one-dimensional
meshes of N processors.

Similarly to the algorithm HYPERCUBE, we schedule the large jobs first.
However, we can assure that the efficiency is I only if the sizes of the jobs
and of the machine are powers of 2. If this is not the case. the first algorithm,
ORDERED, only achieves efficiency 1/2, and hence it is 3-competitive. The
second algorithm, CLUSTERS, is more complex and is 2.5-competitive. The
best lower bound we know is the general 2 - -L one which still leaves a gap
between the bounds.

A different algorithm which is not on-line and achieves an approximation
ratio of 2.5 was obtained by Sleator [Sle80J. Recently this result was improved
by Steinberg [Ste931, who obtained an ilgorithm which is not on-line but
achieves an approximation ratio of '2.

For both algorithms we suppose that the jobs Ji = (ai, ti) are sorted by
their size, a, > a2 _> ... _> a,, where ?n is the number of jobs and ai is the
number of processors required by the job Ji.

37

Algorithm ORDERED schedules the jobs in the order of their size, exactly
as algorithm HYPERCUBE does in the case of hypercubes. Note however
that if the sizes of jobs are not powers of two, it can happen that a job is not
scheduled even if there is a sufficiently long segment of available processors.
For example, if we have three jobs of sizes 2N/3, N/2 and N/3, the algorithm
schedules the first job of size 2N/3, and then waits until it finishes to schedule
the job of size N/2. The job of size N/3 is not scheduled even though there
are sufficiently many processors available, because we require the larger job
of size 1/2 to be scheduled first. This means that the algorithm is less greedy
than the algorithms for PRAM and hypercubes.

If the machine consists of several disconnected segments and any job fits
into any of these segments, the first algorithm can still be applied and the

same bounds hold. This will be useful in Section 11.1, when we use it as a
subprogram in the algorithms for two-dimensional meshes.

Algorithm ORDERED

for i 1: I to m do

if there is a segment of ai processors available,

then schedule the job J. on the leftmost such segment:

wait.

Theorem 10.1 (i) If the sizes of all jobs and of the machine (or each seg-

ment. if the machine consists of m o-re seqments) are powers of two. the al-
gorithm ORDERED is (2 - .&)-competitive and ils efficiency is I as long as

there are unscheduled jobs.

(ii) For general jobs. the algorithm ORDERED is 3-competitive and its

efficiency is larger than 1/2 as long as there are unscheduled jobs.

Proof. If the sizes are powers of two. the proof is identical with the proof
for hypercubes. For general jobs. as long as there is a job available, the size
of any occupied segment is larger than the size of the largest waiting job
which is in turn larger than the size of any available segment. Therefore
the efficiency is larger than 1/2 as long as some job is available, and the

38

the remaining time of the schedule is bounded by T.,. Consequently by

Lemma 7.1 the algorithm is 3-competitive. D

The second algorithm is basically a refinement of the previous one. If
we could achieve that there are always two adjacent jobs between any two

unused intervals, the efficiency would be 2/3 instead of previous 1/2. It is

impossible to maintain this arrangement all the time, but by placing the jobs
carefully we can still achieve an efficiency of at least 2/3.

This algorithm is less greedy than the previous one, since it can hap-
pen that the largest job is not scheduled even if there are sufficiently many

processors available.
The algorithm divides the mesh into a number of segments, starting from

one segment and dividing it into more as the jobs get smaller. We call those

segments clusters. Each cluster contains up to 3 running jobs: a left job
aligned with the left end of the segment, a right job aligned with the right

end of the segment and a middle job somewhere between the left and right
ones. (This is slightly different in Phase 2 of the algorithm.)

The jobs are divided into the set J' of all jobs requiring at most 1/3
of the processors and the set ," of all jobs requiring more than 1/3 of the

processors, J" = 3' - X'. When we refer to the largest job in 3' or 3", we
always mean the largest unscheduled job.

In some steps of the algorithm it is not evident that a job can be scheduled
as required; we prove the correctness of the algorithm in Theorem 10.2.

A substantial part of the following algorithm and the proof is concerned
with large jobs, namely the step (I)(a) and the entire Phase 2 of the algo-

rithm. We feel that this is not the main issue, and recommend the reader to

focus on the other parts.

Algorithm CLUSTERS

Phase 1:

while there is an unscheduled job in J' do

if there is a cluster I with efficiency less then 2/3, then

(1) if there is no left job in I then

39

(a) if I is the leftmost cluster and there is some job available in
J", then schedule the largest job in J" as a left job in I,

(b) else schedule the largest job in J' as a left job in I;

(2) else if there is no right job in I, then schedule the largest job in
J' as a right job in I;

(3) else if there is no middle job in I, then schedule the largest job
in 3, as a middle job in I, positioned so that either its left end
is in the left third of the cluster or its right end is in the right
third of the cluster;

(4) else schedule the largest job in 3' adjacent to the middle job and
divide I into two clusters with two jobs each.

Phase 2: Considering the whole mesh as a single cluster,

while there is an unscheduled job in J" do

(5) if there is no left job, then schedule the largest job in J" as a left
job,

(6) else if there is no right job, all jobs from J' are finished and the
efficiency is at most 1/2, then schedule the largest job in J"
as a right job;

wait.

Theorem 10.2 The algorithm CLUSTERS is correct and 2.5-competitive.

Proof. First let us show that all steps of the algorithm are correct. namely
that it is always possible to schedule the jobs as required by the algorithm.
Steps (1)(a) and (5) ensure that there is at least one job from J" running as
long as J" is nonempty (notice that if a job from J" is finished, the efficiency
drops under 2/3 and the condition in the step (1)(a) or (5) is satisfied). The
jobs from J" are processed in decreasing order, starting with the largest job.
so that the next job will always fit.

Steps (1)(b), (2), (5) and (6) are correct because of similar reasoning,
since the jobs from both J' and J" are processed in decreasing order.

If there are both left and right jobs running in I but no middle job, and
the efficiency is less then 2/3, then either the left or the right job has to be

40

smaller than 1/3 of the length of I, and also the largest unscheduled job in
J' is smaller. This justifies step (3).

If there are 3 jobs running in I, the middle one had to be scheduled in
step (3). Therefore we can assume that the middle job has its left end in the
left third of I (the other case is symmetric). If the efficiency is less then 2/3,
the left job must be smaller than the space between the middle and right jobs
(otherwise the space occupied by the three jobs would be at least as large as
the interval from the left end of the middle job to the right end of I, which

is at least 2/3 of I by the previous assumption). The largest unscheduled
job is not larger than the left job, therefore it can be scheduled between the
middle and right jobs and step (4) is justified.

Now we prove that the competitive ratio is at most 2.5.
The algorithm ensures that the efficiency is at least 2/3 as long as there

is some job available in 3". So if the job which finishes last is from 3', we
get by Lemma 7.1 that the competitive ratio is at most 3/2 + 1 = 2.5.

If the last job is from ,", it means that during the entire schedule at
least one job from 3" is running and hence the efficiency is more than 1/3.

Before we proceed with the proof, note that if the off-line algorithm is not
allowed virtualization, it can run at most two jobs from J" at once. Hence
if the job that finishes last is from J", the length of the on-line schedule is
within a factor of 2 any schedule that does not use virtualization. The rest
of the proof is needed only because we allow virtualization for the off-line
algorithm.

Let T be the length of the entire schedule. We distinguish two cases
depending on the efficiency at the time when the last job from ,' finishes.
If it is at most 1/2, then the only time when the efficiency can be less than

2/3 is at the beginning of Phase 2 after the last job from 3" is scheduled and
at the end of Phase 2 when only one job is running. Therefore T<a !< 2T,...,

and by Lemma 7.1, T < (2+ 12/ 3-)T,,t=
If the efficiency at the time when the last job from Y" finishes is more

than 1/2, we know that the efficiency is at least 1/2 except for the time
when only the last job from 3" is running: it is at least 2/3 during Phase
1, it is at least 1/2 before until the last job form 3" finishes, and then the

41

second job from J" is scheduled by the step (6) as soon as the efficiency
drops under 1/2, and the efficiency is again at least 2/3, as two jobs from

i" are scheduled simultaneously. Therefore T<,L _ T.. and by Lemma 7.1,

T 1+ 1 /3), < 2.5Y(1t. +T<_(I+ 1/2 J°•

11 The two-dimensional mesh

11.1 Deterministic algorithms

Because of the more complex geometric structure of the two-dimensional
mesh, the greedy approach does not work too well. A better strategy is to
partition the jobs according to one dimension first, and then to schedule the
jobs in the same partition using one of the algorithms for one-dimensional
meshes from the previous section.

We first give some definitions and simple algorithms. Then we gradually
build the optimal algorithm using the simple and less efficient algorithms as
subprograms.

Throughout this section we work with an ni x n2 mesh of N = n1 n2

processors. A job requiring a a, x bi mesh with running time is represented
as (ai, bi, ti) (of course. on-line algorithms do not know ti). We assume that
n, _> n 2 and that for each job ai > bi without loss of generality.

We first describe a simple modification of the algorithm ORDERED. It
treats the jobs as one-dimensional. and thus it is efficient only if the heights
of all the jobs are within a small range. Let 6 denote the maximal height of
a job, b = max{biI(ai, bi, ti) E J}.

Algorithm CLASS

Partition the mesh into [n 2/bJ submeshes of size n, x b:

Apply ORDERED to schedule J on these submeshes, disregarding the
second dimension of the jobs and the submeshes. viewing them as
one-dimensional.

Lemma 11.1 Suppose that the height of any job is more than b/2.

42

(i) If the dimensions of all jobs and of the machine are powers of two,

the algorithm CLASS is 2-competitive and its efficiency is I as long as there

are unscheduled jobs.
(ii) For general dimensions, the algorithm CLASS is 9-competitive and

its efficiency is larger than 1/8 as long as there are unscheduled jobs.

Proof. If the dimensions are powers of two, the efficiency does not decrease
by disregarding the second dimension, as it is the same for all jobs. For
general jobs, the efficiency decreases by less than factor of two, since we
assume that the second dimension of every job is more than b/2, and by an
additional factor smaller than two because of rounding when we divide the

mesh. The rest follows from Theorem 10.1. 0

Let J' be a set of two-dimensional jobs. Define a partition of J into job

classes J = -J(O) U ... U Jit(lon2J) by J() = {(ai, bi, ti) E 3In 2/21+' < bi !<
n2/2i}. Define the order of J' to be the number of nonempty job classes,
order(J) = I{J(L)IJ(# 0}1.

The algorithm CLASS is efficient if the job system has only one job class,
but not for general job systems. The simplest way to use it for general job

systems is to schedule the classes one by one. This leads to the following

O(log N)-competitive algorithm.

Algorithm SERIAL

for 1 := 0 to log n 2 do

Apply CLASS to schedule the jobs from J(').

Lemma 11.2 (i) If the dimensions of all jobs and of the mesh are powers

of two, the algorithm SERIAL is (order(J) + I)-competitive.
(ii) For general jobs, the algorithm SERIAL is (order(J)+8)-competitive.

Proof. By Lemma 11.1 the time when the efficiency is low (less than I if
dimensions are powers of two, less than 1/8 for general dimensions) is at
most Tm.. for every nonempty class, the total of order(J)Tmn. Lemma 7.1

finishes the proof. 0

43

To achieve a lower competitive ratio, we schedule multiple job classes
in parallel in different submeshes. However, then the large jobs may not
fit into our submeshes. We solve this problem by handling the large jobs
separately. We use the previous algorithm to schedule a small number of
classes which contain the large jobs. This approach leads to the following
O(log log N)-competitive algorithm.

Algorithm PARALLEL

(1) Use SERIAL to schedule ULofrl))J (1);

let i:- 1;

repeat

(2) let ,; be all jobs that have not been scheduled yet;

let hi = order(,,);

partition the mesh into hi submeshes of size n, x [n2/hiJ;

to each nonempty job class ji,() assign one of these submeshes and
denote it by Gi,1;

(3) apply CLASS in parallel to each nonempty class jl) on Gij, until
the first time when the total efficiency of the running jobs (with
respect to the whole n, xn 2 mesh) is less than 1/16;

(4) wait;

let i := i + 1;

until all jobs are scheduled.

Theorem 11.3 Let S be a schedule generated by PARALLEL for a job sys-

tem ,J. Then T(S) :_ O(log(order(J)))Topt(J). In particular, the algorithm
PARALLEL is O(log log N)-competitive for scheduling on a two-dimensional
mesh of N processors.

Proof. For every i and 1 the submesh G.i is large enough to fit any job
from ,('), since I > log(order(J)) if J(M) is nonempty after the step (1), and
thert fore the smaller dimension of any job in j() is at most n2/order(j) <
n2/hi.

44

By Lemma 11.2, step (1) takes time at most (log(order(J)) + 8)Tpt by
To bound the time spent in the loop of steps (2) to (4), we first prove

that hi+1 :_ hi/2 for all i during the execution of PARALLEL. If there are
unscheduled jobs in Ji") at the end of step (3), then by Lemma 11.1 the
efficiency of the schedule for the jobs in J•i) (with respect Gi,l) is greater
than 1/8. Therefore, the total efficiency at the end of step (3) is at least
hi+1/8hi. On the other hand, by the condition in (3), the efficiency is less
than 1/16. Hence hi+1 :_ hi/2.

It follows that the number of passes through steps (2) to (4) is at
most log(order(J)) + 1. Since the time spent in each pass through step
(4) is bounded by T. and the efficiency during the step (3) is at least
1/16, the total time spent in steps (2) to (4) is by Lemma 7.1 bounded by
(log(order(J)) + 17)To,.p

Therefore the length of the schedule is at most O(log(order(J)))T0 p1 =
O(log log N)Topt, which finishes the proof. 0

Now we construct an O(vog -log V)-competitive on-line scheduling algo-
rithm for the two-dimensional mesh. We use the previous algorithm PAR-
ALLEL to schedule the large jobs.

The improvement of this algorithm over PARALLEL is in making an op-
timal tradeoff between the average efficiency of the schedule and the amount
of time that the efficiency of the schedule is below average. To achieve this
tradeoff, we schedule new jobs in a small part of the mesh, instead of using
the whole machine as in PARALLEL. This ensures that when the efficiency
is too low, we can use the next part immediately. instead of waiting for all

running jobs to finish.
In Section 11.3 we prove a matching lower bound. The proof of the lower

bound shows that this non-intuitive strategy of using only a part of the mesh
is in fact necessary to achieve the optimal competitive ratio. If we try to
use the whole mesh. we cannot get a much better competitive ratio that

O(log log N) of the algorithm PARALLEL.
Let k = [flog(order(J)) I = O(v'log-loYg). We partition the mesh into

k submeshes of size n, x Ln2/kj, denoted by Gj, I < j < k (see Figure 3).

45

S[n2/kJ
n2,

3, Ln2/khijJ

Figure 3: The partition of the mesh used in the algorithm BALANCED PAR-
ALLEL. (The thick lines partition the mesh into submeshes G., the thin lines

partition them further into submeshes G•,j,I.)

Algorithm BALANCED PARALLEL

(1) Use PARALLEL to schedule UL,,I,,~o J

let i = 1;

repeat

for J := 1 to k do begin

(2) let J,7.. he all jobs that have not been scheduled yet:

let hi.3 := order(ft-j);

partition the mesh into hIi.j submneshies of size nl x Ln,)/kh;.,J;
to each nonempty job class -7.0assign one of these submeshes

and denote it by Gi.ij (see Figure 3),

(3) apply CLASS in parallel to eachl nonempty class ,Ji(." on G,..Jj
until the first time when the efficiency of all currently run-
ning jobs with respect to G, is less than 1/ 16. then interrupt

all instances of .CLASS (but allow the current jobs to be pro-

cessed);

end;

46

(4) wait;

let i:= i + 1;

until all jobs are scheduled.

Theorem 11.4 The algorithm BALANCED PARALLEL is O(V`og log N)-

competitive for scheduling on a two-dimensional mesh of N processors.

Proof. For every i, j and 1 the submesh Gi.,3, is large enough to fit any job

from jPQ), since 1 > 2loglogN if j(i) is nonempty after the step (1), and

therefore the smaller dimension of any job in j(') is at most n 2/(log N)2 <

n 2/khi.

By Theorem 11.3, step (1) takes time at most O(log(loglogN))T0 p, <
O(VTog log N)T.pt.

As in the proof of Theorem 11.3, hij decreases by a factor of 2 after each

pass through the steps (2) to (3). That means that during each pass through

the repeat-until loop it decreases by at least a factor of 2k and therefore there

can be at most flog(order(J))/kl = O(v/og log1N) passes through the step

(4). Since the time spent in each pass through step (4) is bounded by Tm.

and the efficiency with respect to the whole mesh during the step (3) is at

least 1/16k = 11(1//1o logVN), the total time spent in steps (2) to (4) is by

Lemma 7.1 bounded by O(vlog Iog V)Topt. 0

Note that we have actually proved that the competitive ratio is at most

O(V4ogTog-n 2), which is smaller than O(V!oglog N) if n 2 is much smaller

than ni.

11.2 Off-line scheduling

In this section we prove that for any job system J, Top,(J) is within a

constant factor of max(Tfr(J), Tmax(J)). Intuitively, this meats that if there

are no long jobs, we can schedule all the jobs so that the average efficiency

is at least some constant.

We use this result twice. In Section 11.3 we prove that no on-line algo-

rithm can guarantee that the length of a schedule S it generates is bounded

by T(S) = o(V1ogo-gN) max(Teff,Tm.,,). To derive a lower bound on the

47

competitive ratio, we will use the result of this section. In Section 11.4 we
use the same ideas as a part of our on-line randomized algorithm.

To make our exposition simpler, we first assume that the dimensions of all
the jobs and the machine are powers of two and the machine is a square n x n

mesh. Let mt = n/2'. In contrast to the on-line deterministic algorithm, we
now divide the jobs into classes according to their larger dimension, j() =

(ai,,bi,,ti) E Jlmt+i < a, <5m)
The idea of our algorithm is to assign to each class an area proportional

to the work in that class, and then schedule each class using the on-line algo-
rithm ORDERED. We have to ensure that every job fits in the area assigned
to it. To achieve this, we schedule the class j(O) separately, and require the
area assigned to class j() to be a union of several square submeshes of size
n/2'. This rounding requires some additional area, which can be bounded
by a third of the size of the machine.

The schedule is generated by the following off-line algorithm. Wi denotes
the work of j(), W denotes the total work of all classes except j(o), and zi
denotes the number of ml x mt meshes assigned to jMo.

Algorithm OFFLINE

(1) schedule J(O) using the algorithm ORDERED;

(2) for each 1 > 0, let W1 := £(a.,b,,t)Ent) aibiti;

let W := El>o Wi;

for each 1 > 0. let z: [:W't/m'WV];

(3) choose disjoint square submeshes Hij, 1 > 0, j = 1....zl of size
ml x ml (see below for details).

(4) in parallel for each I schedule the class j() on the collection of grids
{H1,o,...,I H,,} using ORDERED;

We need to justify the step (3). Since the meshes are squares whose sizes
are powers of two, we can place them greedily starting with the largest mesh.
so that the coordinates of each mesh are divisible by its size. See Figure 4
for an example.

48

Figure 4: An example of the partition of the mesh used in the algorithm
OFFLINE.

This process will place all the meshes as long as the number of processors
is not too large, which is true in our case since

1>0 1>0 3mW 1>0 3 E, Wt 1>0 3 m3

For this algorithm we cannot prove that the time when the efficiency is
low is short. Instead, we prove a similar claim about the average efficiency.

More precisely, we prove that the length of the schedule is bounded by a
constant multiple of the work divided by the number of processors, plus an
additive term bounded by a constant multiple of the longest running time.

Theorem 11.5 (i) If the dimensions of the jobs and of the machine are
powers of two and the machine is a square mesh, the algorithm OFFLINE
produces a schedule S whose length is bounded by T(S) < :3.5 max(Tef, Tmax).

(ii) For general dimensions, there exists an off-line algorithm which pro-
duces a schedule S whose length is bounded by T(S) = O(max(Tef, Tmix)).

Proof. (i) We prove for each 1 > 0 that the instance of ORDERED schedul-

ing J,') in step (4) finishes after the time at most 3W/2n2 + Tm.. Suppose
for a contradiction that for some 1 this is not the case. Then for time more

49

than 3W/2n 2 there are jobs available, and hence by Lemma 11.1 the effi-
ciency relative to the area assigned to j(V) is 1. Thus the work done by jobs

in J() is more than (3W/2n 2)zm2 >_ W1, a contradiction. Therefore the
step (4) takes time at most 3W/2n 2 + Tmax.

During the step (1), the efficiency is 1 except for time Tm.. Let W' be
the total work including j(0). Then the length of the schedule is bounded
by 3W'/2n 2 + 2Tm, , = T.eff + 2Tn..

(ii) For general dimensions, we first schedule large jobs. Then we round
the dimensions of jobs to the next higher power of two and the size of the
mesh to the next smaller power of two, and proceed as before. This changes
the efficiency by a constant factor only.

If the mesh is not a square, we partition the jobs into classes according to
their smaller dimension. Instead of square meshes we then assign the area to
each class in submeshes whose longer dimension is the longer dimension of
the machine. This is less efficient, since we use larger area for rounding the
area assigned tu each class to these submeshes, but the difference is again
only in the constant factor. 0

11.3 A lower bound on deterministic scheduling

We prove that no on-line scheduling algorithm oil an 7l xl mesh of .V proces-
sors can achieve a competitive ratio better than ,,/l1og`Tog.V for some - > 0.
This proves that the algorithm in Section 11.1 is optimal up to a constant
factor. (Note that it is sufficient to prove the lower bound for square meshes.)

To prove this lower bound we use an adversary as introduced in Sec-
tion 7. We specify the number of jobs and their job types. and then design
an adversary who assigns the running times depending on the action of the
scheduler.

The adversary tries to restrict the possibilities of the scheduler so that he
has to act similar to the optimal algorithm we presented in Section 11. 1. The
key technical point is Lemma 11.6. It shows that the adversary can restrict
the actions of the scheduler substantially. More precisely, if the efficiency is
high, the adversary is able to find a small subset of the running jobs w"ich

50

effectively block a large portion of the mesh. This implies that new jobs have
to take new space, and eventually there is no more space available and the
scheduler must wait until the running jobs are stopped.

Of course, the adversary cannot go on forever. The price he pays is that
after each such step the number of distinct sizes of available jobs is reduced.
Nevertheless, it is possible to repeat this process sufficiently many times
before all available job sizes are eliminated.

11.3.1 Notation

For the proof of the lower bound it is convenient to represent meshes as
rectangles with both coordinates running through the real interval [0, n]. A
processor then corresponds to a unit square and a x x y-submesh at (X, Y)

corresponds to the x x y rectangle with the lower left corner at (X, Y).

During the proofs we will also use rectangles with non-integer dimensions

and coordinates. We say that a rectangle R' intersects a set of rectangles R,
if the area of R' n R is not zero for some R E R.

A normal x x y-rectangle is a rectangle with width x and height y with
the lower left corner at (X, Y) such that X is an integer multiple of x and
Y is an integer multiple of y. A normal (x, y)-rectangle is a normal x x y- or

y x x-rectangle.
Observe that any two normal x x y-rectangles are disjoint and that the

any rectangle larger than x x y (in particular the n x n mesh in our case) can
be partitioned into a set of non-intersecting normal .x x y-rectangles and a

small leftover.

11.3.2 The scheduling problem

Now we are ready to specify the job system used for the lower bound proof.
Let k = [./0log log7 Vj, I = [(log logN)21, t = [log 1nJ-

We have t + 1 different job classes. J = J0 U ... U Jt. The job class
Ji contains nk 2 jobs of size -- x si (the running times of the jobs will be

z~termined dynamically by the adversary depending on the actions of the

on-line scheduler). Note that for i < j < t, _> > _ sj > si.

51

Suppose we use an on-line scheduling algorithm to schedule this job sys-
tem. For I C [0 .. t], let C(I) denote the set of all submeshes corresponding
to currently running jobs from ,j, j E I. Let C = C([0 .. t]) denote the set of

submeshes corresponding to all currently running jobs.

11.3.3 Adversary strategy

The adversary strategy is based on the following lemma which is proved in
Section 11.3.4.

Lemma 11.6 Suppose that we are scheduling the job system from Sec-
tion 11.3.2. Then at any time of the schedule and for any interval P' = [a.. b],
0 < a < b < t, and T1 = [0.. t] - I', there exists a set D = D(') g C(I-) such
that eff(D) < 1/8k and every normal (-n , it)-rectangle intersected by C(T)
is also intersected by D.

The adversary maintains an active interval denoted by I. Initially I -

[0.. t) and with time I gradually gets smaller. Let T be some fixed time. The
adversary reacts to the scheduler's actions according to the following steps.
SINGLE JOB: If the scheduler schedules some job on a submesh with
an area smaller than n/k, then the adversary removes all other jobs (both

running and waiting ones) and runs this single job for a sufficient amount of
time.
DUMMY: If the scheduler starts a job that does not belong to a job class
in the active interval (a job from 5,j, j • 1). then the adversary removes it
immediately.
CLEAN UP: If the time since the last CLEAN UP step (or since the
beginning of the schedule) is equal to T and there was no SINGLE JOB
step, then the adversary removes all running jobs, i.e.. assigns their running
times so that they are completed at this point.
DECREASE EFFICIENCY: If of[(C) exceeds l/k, the adversary does
the following: He takes an interval I' C I such that 1I'= [=I1/2] and
eff(C(I')) < eff(C(!))/2 (such I' obviously exists: either the upper or the
lower half of I, whichever has lower efficiency). Then he computes D(I')

52

according to Lemma 11.6 and removes all jobs except those from C(I')UTD(I').
He then sets the active interval to I'.

11.3.4 Evaluation of the Adversary Strategy

In this section we prove that the adversary strategy from the previous section
ensures that T(S) >_ k max(Teff(J),Tm•,((J)). By Theorem 11.5 this is
sufficient to prove the lower bound on the competitive ratio.

If the scheduler starts a job that does not belong to a job class in the
active interval then immediately removing it by a DUMMY step essentially
does not change the schedule. If the scheduler allows a SINGLE JOB step,
the scheduler used a simulation factor greater than k to schedule this job.
Therefore in an optimal schedule the running time of this job will be more
than k times shorter. The adversary assigns a sufficiently large time to this
job, and thus guarantees that the scheduler is not k-competitive.

So we assume that the scheduler always starts jobs from the active in-
terval and the adversary only performs DECREASE EFFICIENCY and
CLEAN UP steps. The CLEAN UP steps divide the schedule into phases.

The lower bound proof follows this outline. We first prove Lemma 11.6
which justifies the DECREASE EFFICIENCY step and then we show that
each phase can have at most 6k of these steps. This implies that every
schedule has to have at least k phases thus proving that T(S) > kT >
kTmax(J). Because the efficiency is at most I/k during the entire schedule.
we get T(S) > kT.ff(j).

The next claim is the key to the proof of Lemma 11.6. It states a purely
geometrical fact which is true for an arbitrary set of subineshes D. but we
will only use it for D being a subset or running jobs.

Claim 11.7 Let y and v be qiven and let D be a(.5et ol'subnesh•es with height

at most yJ/v. 'Then there .iLst-s i, P' (- D such that (tir(D') •_ 2/1, and each
normal I x y-rectangle intersected by "D Is also intersected by D'.

Proof. Let R be a normal n x y-rc -tangle. We will define DR C_ D such that

eff(En) < 2y/vn and it intersects all columns of R intersected by D. It is

53

then sufficient to set D' = UR DR, since every normal 1 x y-rectangle is a
column of some normal n x y-rectangle. Because there are only L[J normal
n x y-rectangles the efficiency of D' is eff(1Y) <_ Ln/yj 2y/vn < 2/v.

DR is obtained by a sweep over the mesh. Let Di E V be the submesh
which intersects the ith column and has the largest right coordinate of all such
submeshes (Di is undefined if no such submesh exists). Define a sequence
Do = 0, D1 ,... , = DR by

S= Di- {Dj} if the ith column of R intersects V but not Di- 1,

SDi-I otherwise.

From the way we choose Di it follows that no column of R is intersected by
more than two submeshes of DR. Since the height of every submesh of DR
is at most y/v, we have eff(DR) < 2y/vn. 0

Proof of Lemma 11.6. Divide C(I') into the following three parts:

SC1 contains all submeshes whose heights are at most s-,
* C2 contains all submeshes whose heights as well as widths are at most

n/s6+' and

0 C3 contains all subineshes whose widths are at most

All submeshes from C([0.. (a - 1)]) are either in Ct or in C(3 depending on
their orientation and all submeshes of C([(b + 1) .. t]) are in C.2, hence C(T) =
Ct U C.2 u C3.

We apply Claim 11.7 four times to obtain the following sets:

D Th C C1, which intersects all normal Ix - -rectangles intersected by C1 :

* D2 C C2 U C3, which intersects all normal " x 1-rectangles intersected
by C2 U C.3 ;

D •D. C1 U C2, which intersects all normal I x ' -rectangles intersected
by C1 U C2 ;

" D 4 C C3 , which intersects all normal !j x 1-rectangles intersected by C3.

,54

Hence VI U V 2 intersects all normal _' x !!-rectangles intersected by C(TI)
and V 3 U V 4 intersects all normal 1 x 4- -rectangles intersected by C(TI).

In all four cases we have v = s/4k. So setting V = A1 U V2 U V3 U I 4

gives us an efficiency eff(D) <_ 32k/s •_ 1/8k for sufficiently large n. E3

The next claim is the key to the proof of the lower bound. It shows
that the adversary strategy does not allow the scheduler to reuse the space
efficiently.

Claim 11.8 Let j E I and R be a normal -,)-rectangle that does not
intersect C at this step of the schedule. Then during the current phase R has
never intersected C.

Proof. The DECREASE EFFICIENCY step is the only step removing jobs
during a phase, and hence it is sufficient to prove that no previous DE-

CREASE EFFICIENCY step removed all the jobs which intersected R.
Assume that the active interval before such a previous DECREASE EF-

FICIENCY step is [a.. b]. Since the active interval never grows, we have
a < j < b. Because the dimensions of R are integer multiples of the dimen-
sion of the normal rectangles from Lemma 11.6 as used in that DECREASE

EFFICIENCY step, R can be partitioned into a set 1Z of such rectangles
without any leftover. According to the assumption, the rectangle R, and

hence some rectangle from 1?, is intersected by C before the DECREASE
EFFICIENCY step. But then by Lemma 11.6 this rectangle, and hence also
R, is also intersected by C after the DECREASE EFFICIENCY step. 0

Claim 11.9 Each phase can have at most 6k DECREASE EFFICIENCY
steps.

Proof. Suppose that the scheduler starts a job from Jj, j E I, in a submesli
C. As this does not cause a SINGLE .JOB step. the job is scheduled on
a submesh with dimensions at least n and L. Thus at least half of that
submesh consists of normal (4-7,, .)-rectangles. It follows from the previous

claim that at least half of the area could not have been used so far during
the current phase.

55

The efficiency immediately before a DECREASE EFFICIENCY step is at
most 1/k + 1/n (since the threshold 1/k was reached by the last job started).

By the construction and Lemma 11.6, the efficiency after the DECREASE
EFFICIENCY step is at most 1/2k + 1/2n + 1/8k < 2/3k for sufficiently
large ti.

This implies that between two DECREASE EFFICIENCY steps the
scheduler has to schedule jobs of the current active interval which will in-
crease the efficiency by at least 1/3k using at least 1/6k of the area that was
not yet used in this phase. This can be done at most 6k times. 0

Theorem 11.10 The adversary strategy forces that for every schedule S
generated by the on-line scheduler

T(S) >_ i /log log N. max(Teff(J), T.,,(J)).

Proof. We first prove that after k phases the active interval I is still
nonempty. Each DECREASE EFFICIENCY step halves I while all other
steps leave it unchanged. In k phases there are at most 6k2 < 2 log log N
DECREASE EFFICIENCY steps. At the beginning the length of I is

log n o N-t + 1 > ! log, n = 2logf(Islog N) 21 > for sufficiently large n. So the
active interval cannot be empty after k phases.

If j is in the active interval at the end of the kth phase then it was in
the active interval during all k phases and the adversary could remove the
jobs of Ji only in the k CLEAN UP steps. During one CLEAN UP step hie
could remove at most nk of such jobs (since each job has area at least n/k),
hence some of them are not finished before the end of the kth phase. Hence
T(S) > kT > kTm..(J).

During the entire schedule the efficiency was at most l/k, hence T(S) >
kT(ff (J). Therefore T(S) > k . max(Tef.(J), Tm.x(,()). 0

This together with Theorem 11.5 gives the following theorem.

Theorem 11.11 The competitive ratio of any on-line scheduling algorithm
for a mesh of N processors is at least l(v/log -logN). 0

56

11.4 Randomized scheduling

In this section we give a constant competitive randomized algorithm for two-
dimensional meshes. The competitive ratio is 28 if the dimensions of all the
jobs and of the machine are powers of two; otherwise it can be bounded by

44.

The basic idea of the algorithm is the following. We partition the jobs
according to their size. For each size we schedule a random sample of jobs

and estimate the total work of the jobs of that size. Then we partition the
mesh so that each job size is assigned an area proportional to the estimated
work of jobs of that size and schedule all jobs of given size in the assigned

area.

There are some issues we have to deal with. We need to have an estimate
on the longest running time, as this is crucial for any sampling. To solve
this problem, we assume that the longest job is at most twice as long as the
longest job we have seen so far. If we see a longer job, we abort our current

attempt and start from the beginning while doubling our estimate. We bound
the time of the schedule by a sum of a term proportional to the work done

and a term which is bounded by a constant multiple of our estimate of the
longest running time. If we sum the bounds for the parts of schedule with
different estimates, the sum of the first terms is still proportional to the work.

while the second terms are a geometric sequence and hence it is bounded by

a constant multiple of the longest running time and our doubling strategy
works.

Even if we hay, oect bound on the longest running time, sampling is
not trivial. We ha "tuarantee that our sample is sufficiently good while
keeping the time required for sampling small. Sampling a fixed number or

fixed fraction of jobs does not work-for some size we can have many jobs
with small running time and a few very long jobs; in that case we are not

likely to see any long job and then we have no useful information about the

total work. Instead, we sample until we see jobs with total running time
exceeding some bound. Intuitively, if there are only two long jobs in the first

quarter of the jobs, it is likely that the number of long jobs is close to eight;
if there are two long jobs among the first four, probably about a half of the

57

jobs are long. Even though we have a much larger sample in the first case,
Hoeffding bounds guarantee that in both cases the probability of a wrong
estimate is about the same. Note that while sampling in this way, we may
schedule most or all jobs before the bound is reached.

In addition, it is necessary to guarantee that we get good estimates for all
of different sizes of jobs at once. This is important and non-trivial, since the
number of different sizes is not constant. To achieve this, we partition the
mesh for sampling so that we schedule in parallel larger number of smaller
jobs. Therefore we have a larger and more reliable sample for smaller jobs,
and the total probability of an error can be bounded.

11.4.1 The algorithm

To make our exposition more simple and clear, we assume that the mesh is
a square and its size is a power of 2 and the sizes of each job are powers of
2. Since this often true in practice, and the competitive ratio is somewhat
better, this simpler case can be of independent interest. These assumptions
can be eliminated in following way. We can round the sizes of jobs to the
next larger power of two and use a submesh whose sizes are multiples of the
modified sizes of all jobs (processing the large jobs separately); this changes
the efficiency and the competitive ratio by a constant factor. It is also not
difficult to modify the algorithm to handle non-square meshes.

Let m- = n/2'. We define the job classes (as in Section 11.2) by j(O =

{(ai, bi, ti) E J'rnit+ < ai <_ mr}, and subclasses by J(L!') = {(ai. bi. ti) e
J0)lmt+j,+1 < bi • mni+1i}. Note that ,ruder our assumptions the size of all

jobs in P(L,'") is exactly mr x mr,+,. Inless we say otherwise. I and P' range
over 3 < 1 < logn, 0 <_ ' < logn. Note that all the subclasses with ' = 0
contain jobs requiring square meshes, for P' = I meshes with 2 : 1 ratio of
their dimensions, etc.

In step (1) of the algorithm we schedule the large jobs (the three job
classes J(O), J(•), and J(2)). Steps (2) and (3) implement the doubling

strategy to estimate the longest running time. At any point the estimate is
2'r.

58

Step (4) implements the sampling. It uses a fixed partition of the mesh
illustrated by Figure 5. To each subclass j0,"), I >_ 3, P' > 0, we assign a
submesh Gm,1 , of size (4m,)x((l'+ 1)mii/4). Each G1ly is divided into (1'+ 1)2'
submeshes Gtxj of size mtxmg+v. Hence (/'+ 1)2' jobs of each subclass j(',")
can be scheduled in parallel. We need to verify that these submeshes can be
placed onto an nxn mesh so that they are pairwise disjoint. For a fixed 1, the
sum of the heights of the grids GI,I, is bounded by F'Ž>0(P' + 1)n/2" +2 = n,
therefore they all fit into a submesh of size 4ml xn. The total width of these
meshes for l > 3 is bounded by n, hence all the meshes fit into the n x n
mesh.

l' = 2

1P= 1.'

l'1=0.

1=3. 4. 5,

Figure 5: The partition of the mesh used for sampling in the algorithm SAM-
PLE. (The thick lines partition the mesh into submeshes Gl., the thin lines
partition them further into submeshes G-j,.j.)

Step (5) computes the estimates based on previous sampling. For each 1
and 1', wij, estimates the total running time of all jobs in J(t',) not scheduled

before the step (4). Note that this also estimates the work (after rescaling),
as the size of all jobs in j(L'") is the same. ilv estimates the total work of

jobs in J('), and w estimates the total work of all unscheduled jobs. pi is
a number of processors proportional to wg, Z= is the number of grids of size
mlxml actually assigned to the class jL) (this rounding guarantees that each
job fits into the assigned mesh).

59

Steps (6) and (7) schedule the jobs in areas approximately proportional to
the estimated work in each class, using a slight modification of the methods
from Section 11.2. The condition in (7) and the step (8) guarantee that we
sample again if some of the estimates turns out to be wrong.

Algorithm SAMPLE

(1) Schedule the classes ,7(O), P11) and J(2) using ORDERED;

while no job of nonzero time was scheduled do

schedule one job;

wait;

let r be the maximal running time of the jobs scheduled so far;

let I := 1;

(2) During the steps (3) to (7),

if the running time of any job exceeds 2Tr,

then begin let I := I + 1; goto (3) end;

(3) wait;

(4) For every 1, 1', let ri, be the number of unscheduled jobs in 7(1');

For time 2 -217, do

if Gl,pj is empty and there is an unscheduled job in j(L',)

then schedule a random unscheduled job in j(',') onto Gtj,jj;

wait;

(5) for every 1, 1,' if there are unscheduled jobs in J('.,')

then begin

let k1 ,, be the smallest k such that the sum of the running times

of the first k jobs from J(',') scheduled during the preceding
step (4) is at least 2(1' + 1)2"2t):

let wtj, := 2rl.,(l' + 1)2'2'1r/kI,,;

end;

else let wtj, be the total running time of jobs from J(l'-) scheduled
during the preceding step (4);

60

for every 1, let wl := ml Eli tol~m1+1,;

let w := El wl;

for every 1,
let p, :=E-n WI/w;

let z, :
(6) Partition the machine into square submeshes Hij, I > 0, 1 < j < zl,

of size ml x ml;

(7) in parallel for each 1 schedule the class JOI) on the collection of grids
{H1,0,..., Hl,-, } using ORDERED, provided that

if ((all jobs of some class J(I) are finished and the total work of the

jobs P(') scheduled during this step is less than w1/4)

or the time spent in this step is Mw/n 2),

then interrupt all instances of ORDERED;

(8) wait;

if there are unscheduled jobs. then goto (4).

We need to justify the step (6). As in Section 11.2. it is sufficient to show
that the total area of all the submeshes H1,, is not too large. since the meshes
are squares whose sizes are powers of two. The area is bounded by

E zm 2 < '(pl/m2 + 1)Mr ZF p 47+ r n 2 + n2 = n 2.1> - -I- < PIET 48
1>3 1>3 1>3 1>3

11.4.2 Probability estimates

Our basic tool are Chernoff-Hoeffding bounds. which bound the probability
that a sum of random variables differs significantly from its mean [Hoe63.
HR90, ASE92]. Many sources state them only for a random variable S which
is a sum of independent 0-1 variables X;. However. the original Hoeffding
paper [Hoe63] proves that the same bounds are true even for more general
variables Xi. First, it is sufficient if the values of each Xi are from the
real interval [0, 1], not necessarily integers. Second, the variables -an be
produced by sampling without replacement from some universe, in which

61

case the variables are not independent; independent variables correspond to
sampling with replacement. Intuitively, both of these changes should keep the
value of S even closer to its mean. Note that in an extreme case of sampling
without replacement we obtain all elements of the universe, in which case we
know the sum exactly.

The most convenient form of the Hoeffding bounds states that for the
appropriate S and any 0 < e < 1 the following holds

Prob[S < (I -)E[S]_ e--2 E[S]/2

Prob[S > (1 + c)E[S]] < e- 2E(S]/3

An elegant derivation for independent 0-1 variables can be found in [HR90;
to modify it for the more general S it is necessary to use convexity of the
function ehX. and Jensen's inequality during the proof, see [Hoe63].

Sampling without replacement corresponds to the process by which we
schedule the jobs within one subclass during the step (4) of the algorithm
and hence the bounds apply in our case. However, we need the following
variation in which we stop sampling after the sum of samples achieves a
certain threshold. The threshold has to be smaller than the total sum, so

that we do not run out of samples.

Lemma 11.12 Let U be a set of r real numbers from [0, 11 with sum W. Let

X l , ... ,X, be a sequence of random variables obtained by sampling without
replacement oat of the set [I. Let Si be the su.m of k••e first i of themn. L,-

.5 < A < W be given. Let k be the unique integer such /hat Sk-i < A -< Sk
(note that k is a random variable). Dhen

Prob[-'(rA/2k < W < 2rA/k)] <_ 2e-\/C

Proof. Let a = rA//W: intuitively a is the expected value of k, i.e.. the

expected number of samples after which the threshold A is reached. Note

that E[Si] = iW/r = iA/a for all i < r.
If W < rA/2k then k < ov/2 by the definition of a. From the definition

of k it follows that for j3 = [a/2J, So > A = -E[Sc]. Using Hoeffding bound

62

we get

Prob[k < a/2] < Prob[So >_ aE[S,]] < e-(1-(s /3 < e-

since the exponent satisfies (1 - •) 2E[Sp] = (1 - 2 = (2 + 9 - 2)A > A/2;

the last inequality uses d < 1/2 and the fact that x + _ decreases for x < 1.
If W > 2rA/k then k > 2a. We put/3 = 12aJ. Note that I > 2 - I >

2 - _. By the definition of k, So _• A - E(S]. Using Hoeffding bound,

Prob[k > 2a] _5 Prob[So _ E J-$1)2 E(s1/2 _< e--/

since - 1)2ElS] = (- 1)20A (+ P - 2)A > A/3; the last inequality

uses 0 > 9/5 and the fact that x + increases for x > 1. 03

11.4.3 Expected time analysis

First we analyze one pass through the steps (4) to (8). Let us introduce some
notation. Let Wj,1 be the total running time of all unscheduled jobs in the
subclass J(,") before the step (4), Wi = mI E , m1+1,W1,1 the total work of
all unscheduled jobs in the class J(') and W = E, W1 the total work of all
unscheduled jobs. Let W'lp, W/ and W' be the same quantities restricted to
the jobs actually scheduled during the steps (4) to (8). Note that wl,,,, wj
and w are estimates of Wl'V,, W1 and W.

The first claim says that with large probability, after step (6) all the
estimates are sufficiently good.

Claim 11.13 If no running time is larger than 21r. then after step (6),
Prob[-,((Vl, l')wil,p/4 < Wlj, <_ wj,l,)] <_ 1/6, and therefore Prob[-,((VI)wt/4 <
W1 •5 wi)] < 1/6.

Proof. First we argue that for any given I and 1',

Prob[--(wi,v,/4 < WlV1,1, < wl,)] < 2e <('+t)2/6 ('

where a = e-'6/ 6 0.0695

63

If W1,1 _< 2(1' + 1)2'2'r then wj,j = W1,1, by the definition of wtji.
Otherwise the total running time of jobs from P(',") is at least 2(1' +

1)2'21r. Hence if we normalize the running times of scheduled jobs and
W = W1,1, by dividing them by 21 r, set r = rl,,, A = 2(1'+ 1)2', and k = kl,,,
we get exactly the situation described in the assumptions of Lemma 11.12.
The statement follows from Lemma 11.12 by definition of wj,D = r1,1#A21r/k1,1,.

Now, we sum over all 1 and 1P,

Ca("'+)2/8 < < o a21/8 a# __ _•21/+ •2i

1>3_ 1>o 1>3 - 1 . - aa

a Ei>1 a 2i a a2 1
1-a +1-a 2 -1-a (1-a 2)2 - 1'2

The statement for wl is a trivial consequence. 0

Now we want to prove that the algorithm is efficient, and if the estimates
are good, the step (7) schedules all the jobs. The step (7) is the only one
that could be inefficient, as the length of all the other steps is bounded by a
constant multiple of the current estimate of the longest running time. Since

the mesh is divided proportionally to the estimated work, we expect that
all the classes are finished at about the same time. The time bound in step
(7) is chosen so that if for no class the estimate of work is too small, all
jobs are finished. If the estimate is not too large, then the average efficiency

in that class is at least 1/4; otherwise the condition in step (7) interrupts
immediately. From this it follows that the average efficiency is sufficiently
large even if we average over all job classes.

However, since different classes can finish at different times (within a
factor of 4), the exact statement is somewhat tedious. One technical issue is
that our estimates include the jobs that have already been scheduled during

the sampling step. However, since the length of the sampling step is bounded
by a multiple of the longest running time, we can "credit" this work to step
(7). We solve this formally as in Section 11.2. Instead of literally proving that
the time when the efficiency is low is short, we again prove that the length
of the schedule is bounded by a constant multiple of the work divided by the
number of processors, plus an additive term bounded by a constant multiple

64

of the longest running time. The next claim analyzes one pass through the
steps (4) to (8) in this way and also proves that if the estimates from the
sampling are good, the step (7) schedules all jobs or ends by finding a job
longer than 21r.

Claim 11.14 (i) The total time T of a pass through steps (4) to (8) is
bounded by T < (4 + V)W'/n2 + 4. 2r.

(ii) If w1/4 < Wi < wj for all 1. then the pass through steps (4) to (8)
either ends by invoking the condition in step (2), or schedules all jobs.

Proof. Since the sizes of all jobs are powers of two, the efficiency of each
instance of ORDERED is 1 as long as there are jobs available in that class.

(i) Let T' be the length of the step (7). We prove that for every 1,

W1' pi •p(T -2'r. 1

If W/V > wi/4, then W[> -pjT', since T'< owi/pi by the definition of p1 and

the condition that bounds the time in step (7). The condition (1) follows.
If W4/ < w1/4 then either not all jobs of jO) are finished at the end of

step (7), or the step ended because the last job of j") just finished and
W1 < w1/4. In both cases at time 2', before the end of the step there were

unscheduled jobs in j('); otherwise the some job is running for 21 r and the
step is interrupted by the condition in step (2). Therefore for time at least
T' - 2t7 the efficiency of the corresponding instance of ORDERED is I and
the work done is at least mti" - 2'7). which proves the condition I).

The condition (1) implies that 11"' = 71 lV - !(.pi)(T' -') >
4n 2 (T' -. 2t), and therefore F' < (4 + -L) W'/n 2 +21 r. The bound on T

now follows, since the length of steps (4) and (8) is bounded by 3- 2'7 and
no time is spent in steps (5) 1 (6).

(ii) Suppose for a contradik tion that 1,71 > wi/.I for all 1. the step (7) is

not interrupted by the condition in (2). and does not schedule all jobs from
some J('). In that case the step (7) takes time Lw/,s . As the area assigned,
to j(1) is at least :' vtlw and the efficiency is I, the tota.work of jobs from
j(L scheduled during (7) is at least ivt. If w1 >_ W1, then this means that

65

all jobs from J(') have been scheduled (considering that some positive work
was also done during (4), to break the equality); a contradiction. 0

Now it is easy to prove the main theorem. We only need to take care of the
fact that the sampling step can be. repeated several times and of the doubling
of the estimate on the longest running time. One subtle observation is that
if the running time is larger than the current estimate, then all the previous
claims still work until we actually see a long job. This is justified by the
following mental experiment: replace all the long jobs by jobs whose length
is equal to the current estimate; until the moment we see a job running
longer than the estimate, the algorithm behaves exactly the same way on
both instances, and hence all the bounds must be true as well.

Theorem 11.15 The algorithm SAMPLE is 2 8-competitive.

Proof. First we bound the total length T'i of steps (3) to (8) during which
I = i. Let Wi" denote the total work done during that part of schedule. Step
(3) takes time at most 27r. According to Claim 11.13, if no job longer than
2'17 is found, the probability that the steps (4) to (8) are repeated is less
than 1/6. Therefore the expected number of passes through steps (4) to (8)
is 6/5 and hence using Claim 11.14 we get

T, _ 2'r+ 4+ ±)Wtl/n2++4.26 r

4 (2) + (6-) T

Let W" be the total work of all jobs and let i' be the maximal value of I
during the algorithm. Obviously 2'r < 2Tma,. To bound the length of step
(1), we use the fact that during step (t) the efficiency is less than I for at
most 3r. Hence the total length of the schedule T(J) is hounded by

E[T(J)] 4+ W"I/n +3r + (i - 1) 2'r
417)1

• (4+ 4)Te(J)+(6-) 2'T

66

4 56
S(4+ Tf()+ (-~ "~

(4 +)Tef(J) +4 (6 - ~)Tm(J) •5 28T.,, (J).

0

12 Higher-dimensional meshes

In this section we generalize our results from Section 11 to higher-dimensional
meshes. Obviously, the lower bound from Section 11.3 is true also for higher
dimensions, because we can use the two-dimensional proof modified so that
the additional dimensions of all jobs are equal to the dimensions of the ma-
chine. Generalization of our algorithms from Sections 11.1, 11.2 and 11.4
requires some work. In all three cases the ideas behind the algorithms do
not change, however, to prove that they still work requires some tedious
calculations.

The main result is that the competitive ratio of the generalized random-
ized algorithm SAMPLE is a constant that does not depend even on the
dimension d, if the dimensions of all jobs and of the machine are are powers
of two, and there are no large jobs (i.e., no dimension of any job is more than
half of the corresponding dimension of the mesh). If the sizes are power of
two, but large jobs are allowed, the competitive ratio is 0(d). For general
jobs, the competitive ratio is 0(4d).

The competitive ratio of the generalized deterministic algorithm is
0(v/og-log N) for a constant dimension d, which is optimal up to a con-
stant factor. However, the competitive ratio depends on d.

12.1 Deterministic scheduling

Our algorithm for deterministic scheduling on d-dimensional meshes is a es-
sentially generalization of the algorithm BALANCED PARALLEL for two-
dimensional meshes from Section 11.1. The main problem is that the number

67

of job classes and in particular the number of classes of large jobs is expo-
nential in d.

We assume without loss of generality that the dimensions of each job
(a,,...,ad) satisfy a, >_ a2 >_ ... >_ ad. For simplicity we suppose first that
the dimensions of all jobs and of the machine are powers of two and all the
dimensions of the machine are the same, n. We say that two jobs are in the
same job class, if all the coordinates except for the last one are identical.
The number of different classes is (log n)d-1.

Now it is possible to generalize algorithms from the previous section in a
straightforward way. CLASS schedules all jobs in a single class using the one-
dimensional algorithm ORDERED disregarding all but the last dimensions.
SERIAL schedules all classes sequentially. PARALLEL and BALANCED
PARALLEL divide the mesh into submeshes with the last coordinate smaller,
and then proceed similarly to the two-dimensional case.

The d-dimensional algorithm runs in three phases. In the first phase
a d-dimensional version of BALANCED PARALLEL is used to schedule
jobs whose last dimension is small. The second phase repeatedly uses a
d-dimensional version of PARALLEL to schedule jobs whose last dimensions
get larger and larger. Finally, the third phase uses a d-dimensional version
of SERIAL, when PARALLEL stops to make progress.

We use BALANCED PARALLEL with k = v'o1 g lo-gn for all jobs with
the last dimension at most a, :_ n/(k . order(J)) _< n/(log n)d. This achieves
competitive ratio of log(order(J))/k = dvlog lIog n.

The number of remaining job classes is bounded (log((log n)d))d =

(d log log n)d. Hence just applying applying PARALLEL once and then SE-
RIAL leads to a f(n))d term in the competitive ratio for some non-constant
function f(n), which would mean that the algorithm is not optimal even
for constant d. To avoid that, we apply PARALLEL recursively. In every
step of PARALLEL the number of job classes is reduced by an applica-
tion of logarithm. This implies that after i iterations of PARALLEL the

number of remaining job classes is bounded by (d(2 log d + log(i+2) n))d and
after log* n iterations it is bounded by (2d log d)d. After this we finish the
schedule using SERIAL for these job classes. This results in a competi-

68

tive ratio of O(dV/og1log n + d log d log* n + d Zi>2 log(i) n + (2d log d)d) =

O(dv1oglogn + dlogdlog* n + (2dlog d)d).
If the dimensions are not powers of two, the efficiency decreases by a

factor of 2 d. However, efficiency is an additive term in the competitive ratio,
and hence it is absorbed in the last term in our case. We have proved the
following theorem.

Theorem 12.1 There exists an on-line algorithm for scheduling on d-
dimensional meshes of N processors which is O(dVlog log` N+d log dlog* N+
(d log d)d)-competitive. If d is a constant, the algorithm is optimal up to a
constant factor. 0

12.2 Off-line scheduling

In this section we bound Topt by a multiple of max(Teff, Top,), which is a
generalization of the off-line algorithm for two-dimensional meshes from Sec-
tion 11.2. At the same time this generalizes a part of the randomized algo-
rithm SAMPLE from Section 11.4, namely the steps (5) and (7) in which
we schedule the jobs based on the previous estimates of the work of each
job class. This is the main application of this section: as opposed to the
two-dimensional case, we do not need this result for the deterministic lower
bound.

We can obtain a constant factor independent of d if the dimensions of all
jobs and of the machine are powers of t.wo. and there are no large lobs. i.e..
each dimension of a job is smaller than the corresponding dimension of the
mesh.

If the machine is a cube. i.e.. all the dimensions of the mesh are equal.
we can process the large jobs with a loss of only a factor d as follows. We

partition them according to the number i of dimensions that are same as tile
corresponding dimension of the mesh. [For each i we process them by as d- I
dimensional jobs, disregarding the first i dimensions. If the machine is not a
cube, the same process loses a factor up to 2d. If the dimensions of the jobs
and of the mesh are not powers of two, the efficiency decreases by a factor
of 4 .

69

In the rest of this section we demonstrate how to produce a schedule
with a length within a constant factor of max(Teff, Tn), assuming that the
machine is a cube, the dimensions of the jobs and of the machine are powers
of two and there are no large jobs. We make the assumption that the machine
is a cube only for clarity, it is easy to see that it is not necessary.

Two jobs are defined to be in the same job class if they differ only in
the last (smallest) dimension. As before, we assign to each class a volume

proportional to its work. This time we partition the whole volume, and
prove that even after all rounding it can fit into a constant number of copies
of the machine. This is sufficient, since instead of scheduling all jobs in
parallel, we can arrange the parts of schedule performed on different copies
of the machine sequentially. We can do this even in the case of the on-line
randomized algorithm, with no change of the proofs.

Now we describe the process of assigning the submeshes and packing them
into the desired shape. We derive the estimates on the additional volume
later.

Instead of assigning a union of squares to a job class, we assign a union
of submeshes whose last dimension is n and the first d - 1 dimensions are
the same as for any job in the class. Rounding the volume up uses at most
one such submesh for each subclass: we have to prove that the total volume
of them is small.

We continue inductively as follows. We group all job classes with the
same d - 2 first coordinates, and pack the submeshes corresponding to them
into submeshes with the last two ,limensions t and the first d - 2 dimensions
same as the jobs in those classes. Since only one dimension of the submeshes
that are being packed varies and it is always a power of two. all but one of the
larger submeshes of each size is completely full. We have to prove that the

total volume of those submeshes that are not full is small. We continue this

process with d -3 dimensions. etc.. until we get meshes with all dimensions
n, which is our goal.

Now we derive the estimates on the total volume. Let

F (i, j) = ... 2-,"2 - ... "2 -- - ,
11Žl 12>11 iil-

70

Each subclass contains jobs of size n2-1 x ... x n2-14 for some particular

sequence 1 < 11 _ ... <_ Id, using the fact that large jobs are not allowed.
It is easy to see that the extra volume during the initial rounding is most
ndF(d - 1, 1), and the extra volume during grouping according to the first i

coordinates is at most ndF(i, 1). Hence the total volume of the final meshes

is at most nd(1 + EI-' F(i, 1)).
First we prove by induction on i that F(i,j) < e22 -J21--. We use the

fact that for any 1' > 1,

2-' 1 2-j' < (1 + 21-j)2-J1 < e2-' 2-j2l'.

1 - 2-i

Hence

F(1,j) = 2-j" < e2')-2-j < e22-)2-i

F(i,j) = 2-112-12 ... 2-1-121!s
11> 12> 11 1 >1,-1

= 21 -J Z 9 1- 2 .. 212-l-11>1 12 Ž11 lI-,12:4-2

= e 21 -J E " .. 1 2-112-12"'.2-(j+1)i-1
11 >.112 211 1_1 - 1 _2: 2

= e21- F(i- I,j + 1)

<e2-'Je2 eJ21i- :2 2 -21-i-

Now ~E4- F(i, 1) < Ed-1 e _2) < 2 and hence we need at most I + e2

copies of the machine. This finishes the proof.

12.3 Randomized scheduling

In this section we generalize the randomized algorithm SAMPLE to higher

dimensions.
We obtain a constant competitive ratio independent of d if the dimensions

of all jobs and of the machine are powers of two, and there are no large jobs,

71

i.e., each dimension of a job is smaller than the corresponding dimension of
the mesh. Even with these restrictions, this result seems to be surprisingly
good, especially when compared to the deterministic algorithm, where the
dependence on d is O((2d log d)d)

The influence of these restrictions is analogous to off-line scheduling in
Section 12.2. If the machine is a cube, we can process the large jobs with a
loss of only a factor d as follows. We partition them according to the number
i of dimensions that are same as the corresponding dimension of the mesh.
For each i we process them as d - i dimensional jobs, disregarding the first i
dimensions. If the machine is not a cube, the same process loses a factor up
to 2 d. If the dimensions of the jobs and of the mesh are not powers of two,
the competitive ratio decreases by a factor of 4d.

In the rest of this section we demonstrate how to modify the algorithm
SAMPLE so that it achieves a constant competitive ratio independent of
d assuming that the machine is a cube, the dimensions of the jobs and of
the machine are powers of two and there are no large jobs. We make the
assumption that the machine is a cube only for clarity, it is not necessary.

We already know from Section 12.2 how to schedule the jobs if we know
the proportion of the work in each job class. The fact that we have only esti-
mates does not change anything in the algorithm and the proof. This allows
us to generalize the steps (5) to (7). Hence it only remains to generalize the
sampling step (4), in particular the partition of the mesh and the derivation
of the bounds on the probability of a wrong estimate.

Two jobs are defined to be in the same class if they differ only in the last
dimension and in the same subclass if all their dimensions are equal. For
1 <_ 1 <_ ... <_ 1d, the subclass J(li..) contains all jobs of size mi, x...xml,

where mi = n/2'. Let l = I1 + 12 + + ld-1, l1 = 11 and 1' = 1 + li - li-I for
i > 1. Note that li > 1 for all i, and 1 > d- 1 since we do not allow large jobs.
To a subclass J(l1 I.d) we assign a submesh of size min x ... x ml,_, x I'mlm.

The submesh assigned to j(Li..d) is divided into 1'2+t-d of submeshes of

size mI, X'' Xmid, which means that we schedule d-2 L+-d jobs from Ji...d)

in parallel.
It is easy to verify by induction that for every i and l i,..., 4, the sub-

72

meshes for all 1+4,... Id fit into two meshes of size 11 x... ×xIxnx ... xn, and
hence all of the submeshes fit on two copies of the machine. We sample first
in parallel for all submeshes on one copy of the machine, then in parallel for

all submeshes on the other copy of the machine.
If we sample for a sufficient constant multiple of the estimate of the

maximal time, the probability that the estimate for J(,.....Ld) is wrong is

bounded by
p o i 121+1-rt

where a is a small positive constant which we choose later. Similarly to the
proof of Claim 11.13, the total error for each class is bounded by

9 1•21+1 -- d <4ci 21+1-d

2 <

I -- a21+1 -d --

The number of nondecreasing sequences of positive integers of length
d - I with sum I is at most 2L-d (in fact, this is the partition number, which

is known to be 2 9(L'•-d), however, we do not need such a strong bound here),
hence the number of different classes with the same 1 is bounded by 21-d.

Thus the total probability of an error is bounded by

2 -,12 1+-"4 = 2Z j' <- 4 a o2
1 _ - Z2'W" < -1 2

I>d-I i>1 j>2-2

where in the first inequality we use the fact that a sequence consisting of

a2 repeated twice, aY repeated four times..... .v2 repeated 2T-times..... is

bounded by a geometric sequence. For a sufficiently small a. this bound is
at most 1/2, and hence with probability t/2 all of the estimates are correct.

The rest of the proof follows as for the two-dimensional meshes.

73

74

Part III

Scheduling parallel jobs with
dependencies

13 Scheduling on PRAMs with virtualiza-
tion

The most important result of this section is an optimal (2 + 0)-competitive
algorithm for scheduling on PRAMs, where 0 = (v/ - 1)/2 : 0.618 is the
golden ratio. We extend this result and give optimal bounds for the restricted
scheduling problem in which each job requests at most AN processors, 0 <
A < 1. In both cases we give matching lower and upper bounds.

This result improves the best known approximation ratio of 3 for the same
problem achieved by Wang and Cheng [WC92]. Our algorithm improves their
approximation ratio and in addition is on-line, whereas their approximation
algorithm uses the information about the running times for scheduling.

First we present our algorithm. The algorithm is greedy; whenever the
number of available processors is larger than requested by a job, some job is
scheduled. In addition, if the efficiency is lower than some constant a, some
job is scheduled even if we have to use virtualization. The constant a is a
parameter of the algorithm which we will optimize later. It always satisfies
1/2 <a < 1.

Algorithm PRAM(a)

while not all joos are finished do

if some available job .1 requests p processors and p processors are avail-
able,

then schedule J on the p processors;

else if the efficiency is less than a and some job is available

75

then schedule a job on all available processors (using virtualiza-
tion).

Theorem 13.1 Suppose that each job requests at most AN processors. Then
PRAM(a) is a-competitive for a = 2 + - and a = - A + 1V4/- + 12 2

Remark. The above a and a satisfy a =1+ Iand a 2 +(2A-1)a-A=0
or equivalently (1 - a)(.! + -) = 1.

Corollary 13.2 If the number of requested processors is unrestricted (A =
1), then PRAM(O) is (2++ k)-competitive, where 0 = (v'5- 1)/2 is the golden
ratio.

Proof of Theorem 13.1. First, observe that at any time when some job
is available, the efficiency is at least a, since otherwise another job would be
scheduled. Let T be the total time during the schedule when the efficiency
is at least a, T' the time when the efficiency is between 1 - a and a, and
T" = T<(1-,) the remaining time. If some job is scheduled on less than the
requested number of processors, then it is scheduled on at least (1 - a)N

processors. Therefore no job running during T" is slowed down and any job
running during T' is slowed down by at most a factor of , -\,. During T'
and T" there is no job available, hence by Lemma 7.2 we get 1-2-T' + T" <
Tm, :_ Toot. Because the efficiency of the optimal schedule cannot be greater

than one, aT + (1 - a)T' < Topt. By adding the first inequality and the last

one divided by a, we obtain T + (1 - a)(+)T'+T" <(I+±)7 Since

(1 - a)(!+-) = 1, the length of tle schedule is bounded by T+1 I"' <

(1 + -)Tpt -TaTopt and the algorithm is a-competitive. 0

Now we prove a matching lower bound.

Theorem 13.3 Suppose that the largest number of processors requested by

a job is AN, where 0 < A < I, and N is the number of processors of the

machine. Then no on-line scheduling algorithm achieves a better competitivle

ratio than a = 2 + "'4-- for all N.

Proof. We first present the proof for fully on-line algorithms: it is divided

into two cases, A = 1 and A < 1. Then we sketch how it can be generalized

to all on-line algorithms.

76

The case of A = 1 The strategy of the adversary is to either keep the
efficiency of the machine under 0, or force the algorithm to schedule a job
on a number of processors that is smaller than the requested number by a

factor of at least 2 + 0.
The job system used by the adversary is illustrated on Figure 6. It has

N processors

1 processor

running time plT -

_I levels
1 77 ...

running time 0
running time T o E] ... o_-__ _ one level

Lo iJ-- "2 johs

Figure 6: The job sy.stem ,tsed in the proof of the lower bound for on-line

scheduling on PRAMs with virtualization. (The boxes deirote the jobs. the

vertical dimension is their running irme and the horizontal dimension is their

size.)

I levels; each level has [6NJ + 2 sequential jobs and one parallel job of size

N. The parallel job depends on one of the sequential jobs from the same
level; all sequential jobs depend on the parallel job from the previous level.
In addition there is one more sequential job dependent on the last parallel

7=7

job. (See Figure 6.)
Now we describe the adversary's strategy for assigning the running times.

The adversary can enforce that at each level the parallel job always depends
on the sequential job that was scheduled last. This is possible since by our
assumption the algorithm is fully on-line and hence cannot distinguish the
sequential jobs from each other.

If a parallel job is scheduled on fewer than (1 - O)N processors, it is slowed
down by a factor greater than 1/(1 - 40). In this case the adversary assigns
a sufficiently long time to this job and removes all other jobs. Therefore the
competitive ratio is at least 1/(1 - (p) = 2 + 4 and we are done.

Otherwise the adversary assigns the running times of all the parallel jobs
and all the sequential jobs on which the parallel jobs depend to 0. The
running times of all other sequential jobs are set to T for some fixed T.
with the exception of the last sequential job, which has running time T' =
0IT. Because of the dependencies and the assumption that no parallel job is
scheduled on fewer than (1 - 0) N processors, no parallel job can be scheduled
earlier than time T after the previous parallel job has finished. Therefore the
schedule takes at least time IT + T' = (1 + O)IT.

The optimal schedule first schedules all jobs with time 0 and then the
sequential job with time T' in parallel with all other sequential jobs. The time
needed to schedule all other sequential jobs in parallel on N - I processors
is [l([9NJ + l)T/(N - 1)], which is arbitrarily close to 61T for sufficiently
large N and 1. Therefore the length of the schedule is arbitrarily close to
oIT and the competitive ratio is arbitrarily close ,o f I + o)/o = 2 + o Tnis
finishes the proof for A = 1.

The case of A < I The proof of this case is more complicated. The method
used in the previous case does not lead to the optimal result. However. if it
is iterated with 4' replaced in the 1th iteration by a carefully chosen n,. then
the upper bound is matched in the limit.

The adversary uses a job system similar to the one in the previous case.
Given a sequence at, a2, . the job system hais a phase for each ni. Phase
i has I levels, and each level has Lai-VJ + 2 sequential jobs and one parallel

78

job of size [ANJ. The dependencies are the same as in the previous case, i.e.,
each parallel job depends on one sequential job from the same level and all
sequential jobs depend on the parallel job from the previous level. Also the
adversary's strategy is similar. The running times of all parallel jobs and all
sequential jobs on which the parallel jobs depend are set to 0; the running
times of all other sequential jobs are T, except for the jobs from the last

level. This scheme only changes if some parallel job is scheduled on too few

processors.
Let a > 2 be the lower bound on the competitive ratio that we want to

achieve. We choose al, 2,... so that if the parallel job of the i-th level is

scheduled together with more than a1 N sequential jobs, it is slowed down too
much. Let Ai = I aj. Let ai be such that a = A and o = °+± -muh e i =11E=1a -- oti Ai-I

for i > 1. All ai and Ai are between 0 and 1. Both sequences are decreasing

to the same limit L satisfying a = A + .A.
First suppose that no parallel job is scheduled earlier than time T after

the previous parallel job has finished. Then the schedule takes time T for

each level and the average efficiency of the first i phases is at most Ai + 1-

After sufficiently many phases this is arbitrarily close to L + -. At that

point the adversary stops the process and assigns a nonzero time T' to a

single sequential job and running time 0 to all the remaining jobs. The time
T' is chosen so that the optimal schedule for all the previously scheduled jobs

takes time T' on N - 1 processors. This forces the competitive ratio to be

arbitrarily close to 1+ +.
Now suppose that some parallel job J of phase i is scheduled early. Then

J is scheduled on at most (1 - a,)N processors. We prove that the adversary

can achieve a competitive ratio arbitrarily close to a. For 1 = 1, the job

J is slowed down by a factor of - - a= a, so the adversary just runs J

long enough. For i > 1, let T be the time when J is scheduled and let A

be the average efficiency of the schedule before T. Obviously A < Ai-2 .

The adversary removes all jobs that have not been scheduled and sets the

running time of J to T' = 7 . The optimal schedule runs first all jobs
with running time 0 and then all sequential jobs in parallel with the parallel

job with running time T'. The time T' is chosen so that the length of the

79

optimal schedule is within an arbitrarily small factor of T' for large I and N.
The schedule generated by the on-line algorithm takes time fT + 1 "0T' =
(-"ijý±-, >- - +1 •)T' = aT'. So the competitive ratio is arbitrarily

close to (T + -- T')/T' >.
We have shown that if we chose a such that a = 1+-1, no on-line algorithm

has competitive ratio smaller than a. We know that a = + . The
substitution of a = 1 + I and a short calculation shows that the condition
for L is equivalent to the equation for a in Theorem 13.1. Therefore or =

2 + f-1 is the solution of the equation.2A

General on-line algorithms We need to modify the job system to handle
the case where the on-line algorithm knows the job system in advance. We
generate sufficiently many copies of each job, so that the graph is very sym-
metric and the scheduling algorithm cannot take advantage of its additional
knowledge. More precisely, the new job system is a tree of the same depth
and each parallel job has the same ,n-out as before. There is one parallel
job dependent on each sequential job except for the last level. So instead
of a constant width tree we have a tree which is exponentially larger. The

adversary's strategy is the same except for the following modification. When
a sequential job is scheduled and it is not the last job of its level, then it and
all jobs in the subtree dependent on it are assigned time 0. Thus both the
resulting schedule and the optimal schedule have the same length as in the
fully on-line case, and the lower bound holds. 0

14 Scheduling on meshes and hypercubes

with virtualization

In this section we show that the optimal competitive ratio on one-dimensional
meshes is 0 1ZN) if both dependencies and virtualization are allowed.
This competitive ratio can be achieved by a deterministic algorithm, and
our lower bound holds even for randomized algorithms. This proves that
in this case randomization does not help, as opposed to scheduling without

80

dependencies.
The gap between the constant competitive ratio for PRAMs and the

optimal 0(*olo t) competitive ratio for one-dimensional meshes is quite big.
This is in sharp contrast to scheduling with no dependencies, where we are
able to achieve a constant competitive ratio for one-dimensional meshes, only
slightly larger than for PRAMs. This shows that the influence of the network
topology is amplified by the presence of dependencies.

For higher-dimensional meshes the algorithm can be generalized and is

O((1o,,N)d)-competitive. For hypercubes a similar algorithm is 0(lolgoN
log logNlglg

competitive. However, for these cases we do not have a matching lower bound
only.

14.1 Algorithms

First we present an algorithm for a d-dimensional hypercube. As in Section 9,
we say that a d-dimensional subcube is normal if the coordinates of all its

processors are identical except for possibly the last d coordinates. Let h be
the smallest power of two such that h log h > d. Note that h = 0('). We
partition the jobs into h job classes J7, 1 < i < h. A job is in 3 if it requests
a hypercube whose dimension is between (d + 1 -i log h) and (d - (i-I) log h).
The hypercube is partitioned into h normal (d-log h)-dimensional subcubes
M....., Mh. Jobs from Ji are only scheduled on Mi.

Algorithm HYPERCIJBE

while not all jobs are finished do

for all i do

if there is a job in 1 available and a normal (d-i log h)-dimensional
subcube in Mi is available

then schedule that jol on that snbcube:

Theorem 14.1 The competitive ratio of HYPERCUBE for a d-dimrnsional
hypercube with N = 2.d processors .i I('(d) = O(logN)

"81 lglogN)"

81

Proof. The algorithm assigns a (d - i log h)-dimensional subcube to each
job from j,. First, this implies that if there is any job available in 3,, the
efficiency of the subcube Mi is equal to 1, and the overall efficiency is at least
1/h. Second, no job is slowed down by a factor greater than h and hence
from Lemma 7.2 it follows that T<j. : hTm.. Hence, by Lemma 7.1, the

competitive ratio is O(h) = 0(,) = 0(IosKoN .10

A similar algorithm can be used for the d-dimensional mesh of N = rd

processors. Let k be the smallest integer such that kk > n. Note that
k = !(5). The jobs are partitioned into h = kd job classes 3,, i =

(ii, ... , id), 1 < ij _< k. A job belongs to J, if it requests a submesh of size
(a,, a2,... ad) such that n/k"1 < aj _< n/ki t . The mesh is partitioned into
h submeshes M, of size Ln/kJ x x Ln/kJ. The jobs from 3, are scheduled
on submesh Air only.

Algorithm MESH

while not all jobs are finished do

for all i = (i1 id) do

if there is a job in 3, available and a Ln/k0J x... x LnlkidJ submesh
in .1I, is available

then schedule that job on such a submesh with the smallest co-
ordinates;

The proof of following theorem is similar to that of Theorem 1.4.1 and is
omitted.

Theorem 14.2 MESH Is O((lg'v)")-competitive for a d-dimensional
mesh of N = nd processors.

14.2 Lower bound

In this section we prove that not even a randomized algorithm for one-
dimensional meshes can achieve a better competitive ratio than 0-(,"gN

Hence our deterministic algorithm for one-dimensional meshes from Sec-
tion 14 is within a constant factor of the optimal competitive ratio and even

82

randomization cannot improve it. This is in contrast to scheduling without
dependencies on two-dimensional meshes studied in Section 11, where we
have shown that randomization can help significantly.

Our approach to this lower bound is similar to the method used in
Section 11.3 to prove a lower bound for deterministic scheduling on two-
dimensional meshes without dependencies. The adversary again tries to block
a large fraction of processors by jobs that only use a small fraction of all pro-
cessors. Here we can prove a larger lower bound, since dependencies give the
adversary more control over the size of available jobs.

However, it is considerably more difficult to prove a lower bound for
randomized algorithms than for deterministic algorithms. For deterministic
algorithms, the adversary can simulate the scheduling algorithm and hence
its actions can depend on the actions of the scheduler. In contrast, for ran-
domized algorithms, we have to specify the running times, or at least their
distribution, in advance, since the adversary has no access to the random
bits of the algorithm. This significantly restricts the adversary as opposed
to our proof of the lower bound in Section 11.3, where it was crucial to use
the possibility of setting the running times according to the actions of the

algorithm.
From a technical point of view it is interesting that the dependencies give

to the adversary sufficient power to handle randomization. The lower bound
for deterministic scheduling on one-dimensional meshes with dependencies
in [FKST931 uses a very similar technique to the bound from Section 11.3 for
scheduling without dependencies, yet the first one generalizes to randomized
algorithms and the other one does not.

Another additional technical difficulty is that the on-line algorithm can
use virtualization. Virtualization caused no problem in the deterministic
case, since we could argue that if any job is scheduled on a small number of
processors, we just assign it a long running time. This argument no longer
works, since we have to commit to the distribution of running times before-
hand. Thus arguing about a single job is not sufficient. We have to argue
that if the algorithm schedules many jobs using virtualization. with high
probability one of them has long running time under the distribution of run-

83

ning times that we choose. To make this argument work, we have to set the
parameters in our proof very carefully.

The key technical tool that makes the lower bound work for randomized
algorithms is Lemma 14.3. It says that if the algorithm schedules many jobs
at once, and we choose some small fraction of them at random, most likely
that fraction will block a relatively large number of processors.

We give the proof only for fully on-line algorithms. It can be generalized
to all on-line algorithms by the method used in the proof of Theorem 13.3.

The job system and the off-line schedule

Let D be the smallest integer such that D12D > N; let T = D4 and S = T 3.
We assume without loss of generality that N = D12D and N is sufficiently
large. Note that D = e)(1"N) and N = SD.\log log N

The job system used in the proof is illustrated on Figure 7. It is a tree of
depth D2 , similar to a job system used in the proof of Theorem 13.3. All jobs
on level iD + j of the tree for 0 < ij < D request Si processors: there are

TN/D 2Sj + 1 of them. We assign the running times at random, thus, strictly
speaking, we have not a single instance of the problem but a distribution on
some subset of instances. For each level the running time is 0 for a single
randomly chosen job, and for the other jobs it is T with probability 1IT and
1 otherwise. All jobs on a given level depend on the job with running time 0
from the previous level, there are no other dependencies.

We call the jobs with running time 0 critical.
For each level, the total number of processors requested by non-critical

jobs is TN/D2 . Thus the work of the jobs on each level is at least TN/D2

and the expected work on each level is less than 2TN/D2 .
First we bound the length of the optimal schedule. The optimal schedule

first schedules the chain of critical jobs; this takes no time as their running
time is 0. The remaining jobs are independent of each other, hence we can
schedule them in time O(max(Teff, Tmax)) using the results on scheduling
without dependencies from Section 10. Obviously Tmn = T. The total
expected work is less than 2TN and thus the expected length of the optimal
schedule is O(T).

84

critical jobs non-critical jobs

__...zzzz...

D2 levels

SD N/S processors

S processors D levels

time T{

running time 1 -c.. L LI LIA .atJi
I processor T jobs

TN/D2 processors requested on each level

Figure 7: A typical instance of a job system used in the proof of the lower
bound for randomized s~chedulingq on one-dimiensio-nal meshes. (The boxes de-
note the jobs, the vertical dimension is their running time and the horizontal
dimension is their size.)

85

An overview of the proof

In the rest of the proof we show that the expected length of the schedule
generated by any randomized on-line algorithm is at least fl(DT), where the
expectation is taken over both the random bits of the algorithm and all the
instances of the job system as chosen randomly by the adversary. This is
sufficient to conclude that the competitive ratio is at least f?(D).

It is crucial that the adversary gives the jobs on each level in random
order. Since they are indistinguishable to the on-line algorithm, no matter
what the algorithm does, they will be scheduled in a random order. In

particular the expected fraction of the non-critical jobs from the given level
scheduled before the critical one is 1/2.

The on-line algorithm has to schedule the critical job on the given level
before it can schedule any jobs on the next level. If the non-critical jobs
scheduled before the critical job on the given level are scheduled on some
contiguous segment of the mesh, we expect that there on most segments T
times larger than the size of a job there will be at least one job with running
time T. If this is true, then such a segment cannot be used for time T
for scheduling jobs at least S times longer. Lemma 14.3 proves a similar
statement for a general case in which the jobs are not necessarily scheduled
on one contiguous segment of the mesh.

Therefore for each D consecutive levels with increasing size of jobs the
space cannot be reused efficiently. A constant fraction of levels uses only a
small fraction of the machine. namely O(.V/D) processors. Since the posi-
tion of the critical job is random, the expected work of the jobs scheduled
before the critical job is f2(TN/D 2) on any of these levels. For N sufficiently
large the fraction of these jobs that can be scheduled in parallel is negligi-
ble. Therefore, if they are scheduled on O(.V/D) processors. the expected
time until the critical job is scheduled is at least Q(T/D). Thus the on-line
algorithm needs expected time of Q(DT) for all D' levels.

These arguments get more complicated if the algorithm uses virtualiza-

tion. We no longer can completely avoid scheduling jobs in a space which is
intuitively unusable, since with virtualization it is always possible schedule
a large job on an arbitrarily small segment. However, if this happens too

86

often, with large probability one of the jobs that use virtualization has long
running time. Our parameters are carefully chosen so that this argument is
sufficient; in fact, this is the main reason why S is as large as D 2, without
virtualization a smaller power would be sufficient.

Simplifying assumptions about the on-line algorithm

We first introduce more terminology and make some assumption about the
behavior of the algorithm. These assumption are possible, since we can

modify any on-line algorithm so that it satisfies them and the competitive
ratio is smaller or only slightly larger.

We divide the schedule into phases and subphases as follows. The sub-
phase j of the phase i, 0 :_ ij < D, is the time interval during which the
first level with an unscheduled critical job is level iD +j (for convenience we
number the levels, phases and subphases from 0).

We use the phrase just before the current subphase to refer to the begin-

ning of the subphase if it is the subphase 0 of any phase, or to the end of the
previous subphase otherwise.

We assume that during subphase j of phase i only the jobs from level
iD + j of the job system are scheduled. This assumption is possible with-
out loss of generality, since once the critical job is scheduled, the on-line
algorithm knows that no other jobs depend on the remaining jobs of this
level. Thus these remaining jobs from all levels can be scheduled together at
the end of the schedule by the constant-competitive algorithm for schedul-
ing without dependencies. This changes the competitive ratio only by an
additive constant.

Since the jobs on each level are ordered randomly by the adversary, no
matter what the actions of the randomized algorithm are, the jobs from each
level are scheduled in a random order. Since we average over all instances of
the job system generated by the adversary, it is equivalent to assume that
the running times of the jobs are assigned as follows. At the beginning of
each subphase we decide randomly the position in which the critical job on

that level will be scheduled. Then whenever a job is scheduled, if it has the
correct position, it has running time 0. Otherwise we randomly assign its

87

running time to be T with probability 11T or 1 otherwise. We make the
random decision about the running time of a non-critical job only at the
moment when that job would finish if its running time were 1 or at the end
of the subphase. (Note that the actual running time can be increased by
virtualization.) Since the algorithm is on-line, it does not know the running
times of jobs until they finish, and thus this delay of the decision does not
change its actions. All random choices that we make are independent. Of
course, the algorithm can make some additional random choices.

A non-critical job is called undecided if we did not yet assign its running
time.

We make two assumptions related to virtualization. Both of these as-
sumptions and their use later are very relaxed. We could tighten them by
giving precise constants in places where we use asymptotic notation, however
the improvement in the final result obtained by that would be very small.

First, we assume that no non-critical job is scheduled on at most o(1/DT)
fraction of the number of processors it requests. Otherwise its expected
running time is at least w(DT). In that case the on-line algorithm could just
use the deterministic O(D)-competitive algorithm for the remaining jobs.
The schedule would finish in time O(DT), and hence the performance of the
on-line algorithm would improve.

Second, we assume that it never happens that there are T undecided
jobs each running on at most o(1/D) fraction of the number of processors
requested by it. Otherwise the probability that none of these jobs will have
running time T is (1 - 1/T)T < l/e, since their runnirg times are chosen
independently. Hence with at least a constant probability one of these jobs
will have running time T, and since it is scheduled on o(1/D) fraction of the
requested processors, the length of the schedule is at least w(DT). Thus the
on-line algorithm again performs better if it uses the deterministic algorithm
for the remaining jobs.

The measure of progress

We say that a processor is used if it is assigned to a job with running time T
scheduled during the current phase. During the subphase j of any phase we

88

say that a processor is blocked if the length of the largest segment of unused
processors containing it is at most D2TS- (a used processor is considered
blocked). The blocked space is defined to be the number of blocked processors.

From the definition of the blocked space and our assumptions it follows
that in the subphase j of any phase no job of size Si is scheduled in the space
that was blocked just before the current subphase as long as the length of the
current phase is at most T. This is trivially true if j = 0, since then "just
before the current subphase" refers to the beginning of the phase, and no
space is blocked at that time. For j > 0 "just before the current subphase"
refers to the end of the previous subphase. Thus any job scheduled in a
space that was blocked at that time would be scheduled between two jobs of
running time T that were scheduled during the current phase, and thus are
still running. By the definition of blocked space the space between those two
jobs is at most D 2TSj-' = Sj/D 2T = o(Si/DT). Scheduling a job in such
a small space would violate our first assumption about virtualization.

Since the algorithm is randomized, we cannot ensure that the adversary
always blocks some fixed amount of space. as opposed to the deterministic
proof in [FKST93]. Instead, we measure the expected sum of the blocked
space and the length of the schedule. This measure is very much like a
potential function in amortized analysis. From the overview of the proof it
follows that 1D fraction of the space should have approximately the same
weight as a time interval of length TID.

Formally we define the waste at a given time to be the sum of the blocked
space divided by .V/D plus the current length of the schedule divided by
T/100D. We measure the waste in units: one unit of waste corresponds to
NV/D of the blocked space or to time T/IOOD in the length of the schedule.

The increase of the waste is the difference between the current waste and the
waste just before the current subphase.

Note that the waste at the beginning of a siiphase and at. the end of
the previous subphase can be different, since blocked space is defined in
the context of the current subphase. The waste (-an decrease only at the
beginning of any phase or after time T of any phase.

89

Estimating the progress

The following lemma says that if many undecided jobs are running at once,
the expected increase of the waste is high. Once we know that, the rest of
the proof follows easily.

Lemma 14.3 Suppose that the time since the beginning of the current phase
is less than T. If at least 23N/D processors are assigned to undecided jobs,
then the expected increase of the waste at the end of the current subphase is
at least least 2 units.

Proof. We prove that the expected number of processors that were not
blocked just before the current subphase but are blocked after the running
times of the undecided jobs are assigned is at least 2N/D. This is sufficient,
since then by the definition the expected increase of waste is at least 2 units.

Divide the processors that were not blocked just before the current sub-
phase into segments of length at most 2DTSi so that no segment is shorter
than DTSi unless it is adjacent to a blocked processor or the end of the
mesh on both ends. (This is possible since any segment of at least DTSj

processors can be divided into segments of size between DTS1 and 2DTS3.)

Mark each of the segments with at least DTS' processors if at least lID
fraction of its processors is assigned to undecided jobs.

Every marked interval contains at least TS-' processors assigned to unde-
cided jobs, hence it intersects at least T undecided jobs. The probability that
all these jobs will be assigned running time t is at most I[- ltT)r < 11/c.

Therefore for any two marked intervals with at most D2TSJ/2 processors be-
tween them, the probability that the segment between them will be blocked
is at least (I - 1/e) 2 > 1/3. as the two events are independent. (There is

a possibility that one of the undecided jobs is intersected by both marked
intervals, in which case the events are not quite independent. However. then
both marked intervals intersect T undecided jobs distinct from the common
one, and the bound is still true.)

Now we show that there are many marked intervals. It then follows
that a constant fraction of them lies between two marked intervals that are

90

sufficiently close, and hence on average a constant fraction of marked intervals
will be blocked.

The segments shorter than DTSj are all blocked and were not blocked
just before the current subphase. Hence if their total length is at least 2N/D,
we are done; otherwise they conta'n at most 2N/D processors assigned to
undecided jobs. The unmarked segments with at least DTSj processors con-
tain a total of at most NID processors assigned to undecided jobs. There-

fore at least 20N/D of the processors assigned to the undecided jobs are in
the marked segments and the number of the marked segments is at least
(20N/D)/2DTS' = 1ON/D 2TSj.

Let the envelope of a marked segment be the largest segment of the mesh
containing it which does not intersect any other marked segment and does not
contain any processor that was blocked at the end of the previous subphase.
Each processor is contained in at most two envelopes, hence the sum of sizes
of all envelopes is at most 2N. It follows that there are at least 6N/D 2TSj
marked segments with envelope of size at most D 2TSP/2, since otherwise
the sum of the sizes of the envelopes of the remaining more than 4N/D 2TSj

marked segments is more than 2N. Each of these segments with a small
envelope is adjacent at both ends to a marked interval, blocked processor or
the end of the mesh, hence it will be blocked with probability at least 1/3.
Thus the total expected length of the marked intervals that will be blocked
is at least 1 6NID6NSJDTSJ = 2N/D.3 T72TSj

By the definition of marked segments this area was not blocked at the end
of the previous phase. 0

Now we are ready to prove the main theorem of this section.

Theorem 14.4 No randomized on-line scheduling algorithm can achieve a
better competitive ratio than Q(l) for an one-dimensional mesh of N

processors.

First we prove that the expected increase of the waste at the end of each
subphase is at least 2 units as long as the length of the current phase is at
most T.

91

If at any time during this subphase the number of processors assigned to
undecided jobs is more than 23N/D, the expected increase of the waste is
high by Lemma 14.3. If this is not true at any point of the subphase, we
prove that the expected length of the subphase is at least T/50D, and hence
the increase of the waste is at least 2 units.

From our second assumption about virtualization it follows that at any
time at most 23DN/Si undecided jobs are scheduled on any 23N/D proces-
sors. By the assumption no T undecided jobs are scheduled on o(1/D) frac-
tion of the number of processors they request, hence those 23DN/Si unde-
cided jobs would have to be scheduled on at least !n((23DN/Sj -T)SJ/D) -

fZ(N) processors.
The expected number of non-critical jobs scheduled before the critical

one is TN/2D'Si. By the previous argument only 23DN/Si of them can be
assigned running time at the end of the subphase. Thus the expected total
work done by all jobs on the given level while they are undecided is at least
TN/2D2 - 23DN > (1 - o(1))TN/2D2 . Since undecided jobs are scheduled
on at most 23N/D processors, for a sufficiently large N it takes expected time
(1 - o(1))T/46D >_ T/50D to perform the required work, which concludes
the proof that the expected increase of the waste during the subphase is at
least 2 units.

Thus if the length of some phase is at most T, the total expected increase
of the waste during all D subphases of that phase is at least 2D. The total
amount of the blocked space is at most N. which corresponds to D units
of the waste. Hence at least D units of the expected increase of the waste
are contributed by the length of the schedule, and therefore the expected
length of the phase is at least Q2(T). It follows that the expected length of
the schedule is fl(DT).

This expectation is taken not only over the random bits of the algorithm.
but also over the random instances produced by the adversary: therefore
we still have to argue that this proves that the competitive ratio is at least
Q(D). Suppose that the competitive ratio is o(D). Then for earh instance
the expected length of the on-line schedule is at most o(D) time the length
of the optimal schedule. Averaging over all instances we get that the ex-

92

pected length of the on-line schedule is o(DT), since the average length of
the optimal schedule is O(T). This contradiction finishes the proof. 0

15 Scheduling without virtualization

In this section we demonstrate the importance of virtualization for on-line
scheduling with dependencies. We prove that if a job is allowed to require
whole machine, no deterministic on-line algorithm can achieve a better com-
petitive ratio than N, and randomization improves the competitive ratio by
at most a factor of two.

We can achieve a matching upper bound in the deterministic case by
scheduling one job at a time, without even attempting to schedule the jobs
in parallel. This demonstrates that virtualization is essential in the design of
competitive scheduling algorithms in our model of on-line scheduling. It also
shows yet another difference between on-line scheduling with dependencies
and scheduling without dependencies. We have seen in Part II that without
dependencies neither the size of the largest job nor virtualization changes the
competitive ratios dramatically.

By the same method we prove a lower bound on the competitive ratio of
a deterministic on-line algorithm if the number of processors required by a
job is restricted to be at most some constant fraction of the machine. We
prove a matching upper bound for PRAMs. This again gives us a tradeoff
between the size of the largest job and the competitive ratio. Compared
to the analogous tradeoff with virtualization allowed in Section 13, here the
optimal competitive ratio is significantly higher and it is more dependent on
the maximal size of the jobs.

We only give the proof for fully on-line algorithms. It can be generalized
to all on-line algorithms by the method uised in the proof of Theorem 13.3.

Theorem 15.1 Assuming that virtualizaation is not allowed. the following
holds.

(i) No deterministic on-line scheduling algorithm can achieve a sunaller
competitive ratio than N on any machine with N processors.

93

(ii) No randomized on-line scheduling algorithm can achieve a smaller
competitive ratio than N/2 on any machine with N processors.

(iii) Suppose that the largest number of processors requested by a job on
a machine with N processors is AN, for a fixed 0 < A < 1. Then no deter-
ministic on-line scheduling algorithm can achieve a smaller competitive ratio
than 1 + Ih I

Proof. We prove the last part of the theorem first, since the other two parts
then follow easily.

(iii) The proof is similar to that of Theorem 13.3. The job system used
by the adversary has N - 1 levels. Each level has N - LANJ + 2 sequential
jobs and one parallel job requiring [ANJ processors. The parallel job depends
on one of the sequential jobs from the same level: all sequential jobs depend
on the parallel job from the previous level. In ,ddition there is one more
sequential job dependent on the last parallel job.

In the beginning the algorithm can schedule only sequential jobs. The
adversary enforces that on each level the sequential job which the parallel
job depends on is started last; this is possible since the algorithm cannot
distinguish between the sequential jobs. The adversary terminates this se-
quential job and keeps the other sequential jobs running for some sufficiently
large time T. During this time the scheduling algorithm cannot schedule the
parallel job. As soon as the parallel job is scheduled, the adversary termi-
nates it and all remaining jobs of this level. This process is repeated until
all jobs except the last sequential job have been scheduled. The adversary
assigns time T' = (N - LAN] + I)T to the last job. The total length of the

generated schedule is (N - l)T + T' = (2N LANJ)T.
The off-line algorithm first schedules all jobs of time 0: then schedules

the sequential job with running time T' and in parallel with it all the other
sequential jobs. There are (N- 1)(N- LANJ + 1) such jobs. all with running
time at most T and independent of each other. The schedule for them on
N - 1 processors takes time at most (N - [AN] + I)T = T'. So the length

of the off-line schedule is at most T' and the competitive ratio is at least
(N-1)T+T' = 1 + N +I . This is arbitrarily close to 1 + ' for large N

T' N-LANJ+l -
and constant A.

94

(i) The proof is essentially a special case of the proof of (iii) for A = 1.
Each level of the job system has two sequential jobs and one parallel job
requiring the whole machine. All sequential jobs with no dependent jobs
have running time T. As before, the adversary enforces that these jobs are
scheduled sequentially, while the optimal schedule runs all N of +tlem in
parallel. This gives the competitive ratio N. (In this case we se a
simpler job system which works directly even for the algorithms th € not
fully on-line, see [FKST93].)

(ii) We use the same job system as in the proof of (i). As the two

sequential jobs are not distinguishable, the adversary can guarantee that
with probability at least 1/2 the randomized on-line algorithm schedules the

job with nonzero running time first. In that case the parallel job from tha..
cannot be scheduled until this sequential job finishes. Thus the expected
length of the schedule produced by the on-line algorithm is at least half of

the total running time of jobs with nonzero running time, which gives the
competitive ratio of N/2. o

Now we show that this lower bound is tight for PRAM. In fact, any greedy
strategy achieves this bound.

Algorithm GREEDY

while not all jobs are finished do

if some job J requires p processors and p processors are available.

then schedule J on the p processors.

Theorem 15.2 Suppose that the largest number of processors requested by
a job is AN, where 0 < A < 1. Then GREEDY is (1 + ttT ')-competitive.

Proof. No job requests more than LAN] processors. Therefore if the effi-
ciency is less than I - A, there is no available job. By Lemma 7.2 this time
is smaller than the total time along some path in the dependency graph and
hence T<(,-,\) < Tm.. <_ Toot. Lemma 7.1 finishes the proof. 0

95

16 Tree dependency graphs

In this section we prove Theorem 4. 1, which says that scheduling job systems
whose dependency graphs are trees is as difficult as scheduling general job
systems.

First note that a similar theorem is easy to prove if we restrict ourselves
to fully on-line algorithms. Suppose that we have a fully on-line algorithm for
tree dependency graphs and a general dependency graph F. We dynamically
construct a tree subgraph P of F and use the algorithm on P. We can do
this because the fully on-line algorithm does not know the dependencies in
advance. For each job J we only keep the edge from a job J' such that J
became available when J' finished. The generated schedule is a valid schedule
for both F and P, and the optimal schedule for P can only improve if some
dependencies are removed. Therefore the achieved competitive ratio for F is

no greater than the ratio for the tree dependency graph P.
In the next theorem we prove the same statement for the more difficult

case is when the on-line algorithm may know the dependency graph in ad-
vance.

Theorem 16.1 Let an on-line scheduling problem with dependencies be
given (i.e., a specific architecture and simulation factors). Then the optimal
competitive ratio for this problem is equal to the optimal competitive ratio for
a restricted problem in which we allow only job systems whose dependency
graphs are trees as inputs.

Proof. Obviously the optimal competitive ratio for the restricted problem is
at most the ratio for the general problem. To prove the reverse implication,

assume that we have a a-competitive algorithm S for the restricted prob-
lem. Using it, we show how to schedule a general job system so that the
competitive ratio is at most a.

Given a general dependency graph F. we create a job system with a tree
dependency graph F'. Then we use the schedule for F' produced by S to
schedule F. We determine the running times of jobs in F' dynamically based

on the running times of jobs in F.

96

The set of jobs of P is the set of all directed paths in F starting with
any job that has no predecessor. There is a directed edge (p, q) in P if p is
a prefix of q. If J E _F is the last node of p E F', then p is called a copy of
J. The resource requirements of each copy of J are the same as those of J.
A path p is the last copy of J if it is the last copy of J to be scheduled. Let
Y" be the subgraph of r consisting of all last copies and all dependencies
between them.

Our scheduling algorithm works as follows. We run S on F'. Suppose S
schedules p E F. If p is the last copy of some J, then we schedule J to the
same set of processors as p was scheduled by S. If p is not the last copy, then
we remove p and all jobs that dependent on it. If a job J E F finishes, we
stop its last copy p E F.

Notice that if p is the last copy of J. then we schedule J at the same
time, on the same set of processors and with the same running time as S
schedules p. All other copies of J are immediately stopped.

To show correctness of our schedule, we need to prove that when the last
copy of J is available to S. J is available to us. Suppose this is not the case.
Then there is some J' E F such that J depends on J' and J' has not finished
yet. Then the last copy of J'. say q E F". is also not finished, and there is
a copy p of J such that q is a prefix of p. So p is a copy of .1 that is not
available yet. a contradiction.

The schedule S generated for F- and our schedule for F have the same
length. Only the jobs from P' (i.e.. the last copies of the jobs from F') are
relevant in P': all other jobs have running time 0 and ean be scheduled at the
end. By construction, every schedule for F- corresponds to a schedule for F"
and therefore to a schedule of P'. So the competitive ratio for Y is not larger
than the competitive ratio for P, which is at most oa by the assumption of
the theorem. 0

Algorithmically, the above reduction from general constraints to trees is
not completely satisfactory. because F can be exponentially larger than F.
Nevertheless, it proves an important property of on-line scheduling from the
viewpoint of competitive analysis.

97

98

Part IV

Randomized scheduling of
sequential jobs

17 The model and the previous results

The problem of on-line scheduling of sequential jobs was introduced in 1966
by Graham [Gra66]. In this model we have m processors and a sequence
of jobs arriving one by one; there are no dependencies between the jobs.
The jobs are sequential, i.e., they require only one processor. When a job
arrives, we know its running time and we have to assign it to one of the
processors immediately, without knowledge of the jobs that arrive later. The
jobs cannot be preempted.

As in our model for parallel jobs, the goal is to minimize the makespan,
the time when the last job is completed. In the randomized model we measure
the expected makespan. The performance of an on-line algorithm is again
measured by the competitive ratio.

In Section 18 we improve the previously known lower bounds on the com-
petitive ratio of randomized on-line algorithm for this problem. This results
was proved independently by Chen, van Vliet and Woeginger [CvVW94a].
Now we survey the previous resu!ts.

While the deterministic case has been studied extensively [Gra66, GW93.

BFKV92, KPT94], much less is known about the randomized case; all of the
following results are by Bartal, Fiat, Karloff, and Vohra [BFKV921. Only the
case of mn = 2 is solved completely; an optimal 4/3-competitive algorithm is
known and provably better than any deterministic algorithm. For m = 3 a
nontrivial lower bound of 1.4 was proved. For in > 3, the best known lower
bound was the easy 4/3 bound, not even matching the bound for m = 3. For
m > 3 no randomized algorithm with a better competitive ratio than the
best deterministic algorithm is known.

For a long time the best deterministic algorithm was the (2 -

99

competitive Graham's algorithm [Gra66J. For m = 2 and m = 3, Graham's
algorithm is provably optimal. For larger m, it was improved several times
during the last few years [GW93, BFKV92, KPT94]. For sufficiently large m
the best known algorithm is 1.945-competitive [KPT94]. For m > 3, an algo-
rithm slightly better than Graham's is presented in [GW93]. The best lower
bound on the competitive ratio of the deterministic scheduling algorithm for
large m is approximately 1.837 [BKR]; an earlier bound of 1 + 1/v'i Z 1.707
is valid for any m > 3 [FKT89].

For a related model, deterministic preemptive on-line scheduling of se-
quential jobs, Chen, van Vliet and Woeginger [CvVW94b] proved the same
lower bound as we prove for randomized nonpreemptive algorithms, and gave
a matching algorithm.

18 An improved lower bound

We prove that the competitive ratio of any randomized on-line scheduling
algorithm for m machines is at least I + 1/((Y- 'I)m - 1). This matches the

known tight bound of 4/3 for m = 2 and improves the previous bounds for
all m > 2. If m is large, this bound approaches 1 +1/(e-1) z 1.582. Table 8
compares the bounds for a few values.

number of processors our bound previous bound

9 4/3 • 1.333 4/3

3 27/19 • 1.421 1.4

4 256/175 • 1.463 4/3

5 3125/2101 • 1.487 4/3

6 46656/31031 • 1.504 4/3

__ 1 + 1/(e - 1) -l) 1.582 4/3

Table 8: Lower bounds on the competitive ratio for randomized on-line
scheduling of sequential jobs.

100

The intuition for our lower bound can be better understood if we look
at the algorithm and the lower bound for two processors from [BFKV92J.
Their algorithm guarantees that the ratio of the expected loads on the two
processors is 2 : 1 most of the time (more exactly, unless there is a job
with a very long running time), where the load of a processor is defined
as the total running time of all jobs assigned to the processor, also called
height in [BFKV92I. Their lower bound essentially shows that any optimal
algorithm has to maintain this ratio of expected loads, and that it is not
possible to maintain a better ratio. The optimal algorithm can balance the
loads exactly, hence the competitive ratio is 2/1.5 = 4/3.

In the case of m processors we show that the best ratio of loads which
might be possible to maintain is 1 : x : x2 : ... : Xmd-, where x = m/(m - 1).
The optimal schedule can balance the loads to be (1 + x +... + xm-)/m =

m(x m - 1)/(x - 1), hence the competitive ratio is at least xm-t/(m(xm -

1)1(x- 1)), which gives our bound. See Figures 8 and 9 for an illustration.
We first prove a general lemma which applies to any sequence of jobs.

For our proof the last m jobs of the sequence are most important. In fact in
the particular sequence that we use later, the only purpose of the other jobs
is to pad the sequence so that the optimal schedule can always balance the
loads exactly.

Let a sequence of jobs J be given. Denote the last rn jobs of J by
J1,..., Jm and their running times by 1. tin. Let J, be an initial segment
of J ending by Ji (i.e., Jm = 3). Let Si be the sum of the running times
of all jobs in Ji and let T.,,,(J,) be the length of an optimal scheduie for Ji.
For a given randomized algorithm .4. E[T..(J,)1 denotes the expected length
of the schedule it generates on Ji.

The definition of the competitive ratio a implies that for any choice of
the sequences of jobs Ji we have

EL, E[T.4(j,)] <F'- _ T,p, ='.

i= _&=, 17Fin , T,,P,(j,) Fin T.=ti)

The following lemma gives an upper bound on the denominator of the left-
hand side.

101

height z2m-IT

height x•T+T x - 1)x'-'T

(x-m -)
height xnT\

! (xm - 1)zmn-lT

(xin - 1)T

xm-IT

time T E =

m processors m processors

Figure 8: An optimal on-line sched- Figure 9: An optimal off-line sched-

ule for the sequence of jobs used it tile for the sequence of jobs used in

the lower bound for randomized on- the lower bound for randomized on-

line scheduling of sequential jobs. line scheduling of sequential jobs.

102

Lemma 18.1 For any randomized on-line scheduling algorithm A for m ma-
chines, E!' E[TA(Ji)] _ S,.

Proof. Fix a sequence of random bits used by the algorithm A. Let T, be
the makespan of the schedule generated by the algorithm A for the jobs in J3
with the fixed random bits. Since the algorithm is on-line, the schedule for 3,

is obtained from the schedule for J,-I by adding Ji to one of the processors.
Order the processors so that the load of ith processor does not change

after Ji is scheduled. There always exists such an ordering: Designate a
processor to be the ith one, if Ji is the last job scheduled on it. Clearly at
most one processor is designated as the ith one. If no processor is designated
as the jth one for some j, pick one of the remaining processors arbitrarily;
note that no job Ji is scheduled on these processors. This defines an ordering
satisfying the condition.

Let Li be the load of ith processor after scheduling all jobs. Obviously
E-- Li = Sm,. The load of ith processor is Li already after scheduling 3,
because of our condition on the order of the processors. Therefore Ti > Li

and F-,I Ti > = Li = S. for any choice of the random bits.
The lemma follows by the linearity of expectation. 0

Let x = m/(m - 1). We choose our sequence of jobs so that the following
property is satisfied. If all the jobs preceding Ji are scheduled so that the
ratio of loads is 1 : r: x-, then after scheduling Ji on the least loaded
processor the ratio of the loads is preserved.

Let T = (m - 1)2m-1. The sequence J consists of (1 +.-. + xm-i)T jobs
of running time 1 followed by m jobs with running time ti = (xm - l)x1-1 T.
The value of T is chosen so that all running times are integers. Optimal
on-line and off-line schedules are illustrated on Figures 8 and 9.

After scheduling the jobs preceding .1i so that the ratio is as described
above, the loads of the processors are ;r-'TT....xi+m-2T. For i = I this is
obvious. It is maintained inductively, since by our choice of running times we
have xi-IT+ti = xi+m-lT, which is exactly the condition we need to preserve
the ratio of the loads. The next theorem says that no on-line algorithm can
do better, even if it is randomized.

103

Theorem 18.2 For any randomized on-line scheduling algorithm for m ma-

chines, the competitive ratio am is at least I + 1/(("i-i)m - 1).

Proof. First we prove that Topt(j,) = ti. The total running time of all jobs
in Ji is

Si = (I + --. + x'-I)T + (x"' - 1)(1 +.- + xi-')r

= (xi +... + xm-)T + xm(1 +-.. + xi-l)T

= x m(1 +.. -x-l)T

= XT -- = - ti = mti.
x-I x-1

Since running times of all jobs are integers, at most m of them are greater
than 1 and ti is the maximal running time, the loads of the m processors can
be balanced perfectly and Topt(j) = ti.

Using Iemma 18.1 and Sm = xm(l + --. + xm-l)T from the previous
computation, the competitive ratio aUn for any randomized on-line algorithm
A is bounded by

rn _ iEm, E[TA(Ji)]> Sm _
am> = Top(> - S t

X M•(1 + -- + x "'-')T X M 1- --- 1

(+- + xm-l)(x -)T x-_ - 1 (- 1

0

We conjecture that there exists a randomized algorithm which matches
this bound, but we are unable to prove this at the present time.

104

References

[ASE92] Noga Alon, Joel H. Spencer, and Paul Erd6s. The Probabilistic
Method. Wiley, 1992.

[BCH+88] Sandeep N. Bhatt, Fan R. K. Chung, Jia-Wei Hong, F. Thom-
son Leighton, and Arnold L. Rosenberg. Optimal simulations
by butterfly networks. In Proceedings of the 20th Annual ACM

Symposium on Theory of Computing, pages 192-204. ACM,
1988.

[BDBK+90] Shai Ben-David, Allan Borodin, Richard M. Karp, Gabor Tar-

dos, and Avi Wigderson. On the power of randomization in on-
line algorithms. In Proceedings of the 22nd Annual ACM Sym-
posium on Theory of Computing, pages 379-386. ACM, 1990.

[BDW86] Jacek BlaLewicz, Mieczyslaw Dribowski, and Jan Wqglarz.
Scheduling multiprocessor t-tsks to minimize schedule length.
IEEE Transactions on Computers, c-35(5):389-393, 1986.

[BFKV92] Yair Bartal, Amos Fiat, Howard Karloff, and Rakesh Vohra.
New algorithms for an ancient scheduling problem. In Proceed-
ings of the 24th Annual ACM Symposium on Theory of Comput-
ing, pages 51-58. ACM, 1992. To appear in Journal of Computer

and System Sciences.

[BKRJ Yair Bartal. Howard Karloff, and Yuval Rlabani. A new lower
bound for in-inachine scheduling. To appear in Information
Processing Letters.

[Ble90] Guy E. Blelloch. Vector Models for Data-Parallel Computing.
MIT-Press, Cambridge MA. 1990.

[CL88] Guan-Ing C(hen and Ten-[lwang Lai. Scheduling independent
jobs on hypercubes. In Proceedings of the 5th Annual Sympo-
sium on Theoretical Aspects of Computer Science, pages 273-

280, 1988.

105

[CvVW94a] Bo Chen, Andri van Vliet, and Gerhard J. Woeginger. A lower
bound for randomized on-line scheduling algorithms. Techni-

cal Report 9414/A, Econometric Institute, Erasmus University,
Rotterdam, the Netherlands, 1994.

[CvVW94b] Bo Chen, Andr6 van Vliet, and Gerhard J. Woeginger. An
optimal algorithm for preemptive on-line scheduling. Techni-
cal Report 9404/A, Econometric Institute, Erasmus University,
Rotterdam, the Netherlands, 1994.

(DL81] Jianzhong Du and Joseph Y.-T. Leung. Complexity of schedul-
ing parallel task systems. SIAM Journal of Discrete Mathemat-

ics, 2(4):473-487, 1981.

[FKST92I Anja Feldmann, Ming-Yang Kao, Jiii Sgall, and Shang-Hua
Teng. Optimal online scheduling of parallel jobs with depen-
dencies. Technical Report CMU-CS-92-189, Carnegie Mellon
University, 1992.

[FKST931 Anja Feldmann. Ming-Yang Kao. Jiii Sgall. and Shang-Hua
Teng. Optimal online scheduling of parallel jobs with depen-
dencies. In Proceedings of the 25th Annual ACM Symposium on
Theory of Computing, pages 642-651. ACM. 1993.

[FKT89] U. Faigle. W. Kern. and Gy. Turan. On the performance of
on-line algorithms for partition probIlems. .4cla Cybernetica.
9:107-119. 1989.

[FST91] Anja Feldmann. .JiiH Sgall. and Shang-Hua Teng. Dynamic
scheduling on parallel machines. In Proceedings of the 32nd An-
nual Symposium on Foundations of Computer Science. pages

111-120. IEEE. 1991.

[FST94] Anja Feldmann. .Jifi Sgall. and Shang-Hua Teng. Dynamic
scheduling on parallel machines. Theoretical Computer Science.
1994. To appear in the special issue on dynamic and online
algorithms.

106

[GJ79] Michael R. Garey and David S. Johnson. Computers and In-
tractability: a Guide to the Theory of NP-completeness. Free-
man, 1979.

[Gra66] R. L. Graham. Bounds for certain multiprocessor anomalies.
Bell System Technical Journal, pages 1563-1581, November
1966.

[GW93] Gibor Galambos and Gerhard J. Woeginger. An on-line
scheduling heuristic with better worst case ratio than Graham's
list scheduling. SIAM Journal on Computing, 22(2):349-355,
1993.

[HB841 K. Hwang and F. A. Briggs. Computer Architecture and Parallel
Processing. McGraw-Hill, 1984.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded
random variables. American Statistical Association Journal,
pages 13-29, March 1963.

[HR90] Torben Hagerup and Christine R11b. A guided tour of Chernoff
bounds. Information Processing Letters, 33:305-308, 1990.

[KA861 S. Rao Kosaraju and Mikhail J. Atallah. Optimal simulation
between mesh-connected arrays of processors. In Proceedings
of the 18th Annual ACM Symposium on Theory of Computing,
pages 264-272. ACM, 1986.

[KPT94] David R. Karger, Steven J. Phillips, and Eric Torng. A better
algorithm for an ancient scheduling problem. In Proceedings of
the 5th Annual A CM-SIAM Symposium on Discrete Algorithms,
pages 132-140. ACM-SIAM. 1994.

[LRK78] J. K. Lenstra and A. H. C. Rinnooy Kan. C-mplexity of schedul-
ing under precedence constraints. Opera...ons Research, 26:22-
35, 1978.

107

[LST90] Jan Karel Lenstra, David B. Shmoys, and Eva Tardos. Approx-
imation algorithm for scheduling unrelated parallel machines.
Mathematical Programming, 46:259-271, 1990.

[MPT93] Rajeev Motwani, Steven Phillips, and Eric Torng. Non-
clairvoyant scheduling. In Proceedings of the 4th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 422-431.
ACM-SIAM, 1993.

[Ran87] Abhiram G. Ranade. How to emulate shared memory. In Pro-
ceedings of the 28th Annual Symposium on Foundations of Com-
puter Science, pages 185-194. IEEE, 1987.

[Sar89] Vivek Sarkar. Partitioning and Scheduling Parallel Programs
for Multiprocessors. MIT Press, 1989.

[Sle80] Daniel D. Sleator. A 2.5 times optimal algorithm for packing
in two dimensions. Information Processing Letters, 10(1):37-40,
1980.

[SOG+94] Jaspal Subhlok, David R. O'Hallaron, Thomas Gross, Peter A.
Dinda, and Jon Webb. Communication and memory require-
ments as the basis for mapping task adn data parallel programs.
Technical Report CMU-CS-94-106, Carnegie Mellon University,
1994.

[ST85] Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency
of list update and paging rules. Communications of the ACM.
28(2):202-208, 1985.

[ST93] David B. Shmoys and Eva Tardos. Scheduling unrelated ma-
chines with costs. In Proceedings of the 4th Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 448-454. ACM-
SIAM, 1993.

[Ste93] A. Steinberg. A strip packing algorithm with absolute perfor-
mance bound 2. Manuscript, 1993.

108

[Sub93] Jaspal Subhlok. Automatic mapping of task and data parallel
programs for efficient execution on multicomputers. Technical
Report CMU-CS-93-212, Carnegie Mellon University, 1993.

[SWW91] David B. Shmoys, Joel Wein, and David P. Williamson. Schedul-
ing parallel machines on-line. In Proceedings of the 32nd An-
nual Symposium on Foundations of Computer Science, pages
131-140. IEEE, 1991.

[TSWY94] John Turek, Uwe Schwiegelshohn, Joel L. Wolf, and Philip S.
Yu. Scheduling parallel tasks to minimize average response time.
In Proceedings of the 5th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 112-120. ACM-SIAM, 1994.

[TWY92] John Turek, Joel L. Wolf, and Philip S. Yu. Approximate al-
gorithms for scheduling parallelizable tasks. In Proceedings of
the 4th Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 323-332. ACM, 1992.

[WC92] Qingzhou Wang and Kam Hoi Cheng. A heuristic of scheduling
parallel Gasks and its analysis. SIAM Journal on Computing,
21(2):281-294, 1992.

109

